Anatomy, immunology, digestive physiology and microbiota of the salmonid intestine: Knowns and unknowns under the impact of an expanding industrialized production

Håvard Bjørgen, Yanxian Li, Trond M. Kortner, Åshild Krogdahl, Erling Olaf Koppang

PII: S1050-4648(20)30655-0

DOI: https://doi.org/10.1016/j.fsi.2020.09.032

Reference: YFSIM 7306

To appear in: Fish and Shellfish Immunology

Received Date: 9 June 2020

Revised Date: 18 September 2020

Accepted Date: 21 September 2020

Please cite this article as: Bjørgen Hå, Li Y, Kortner TM, Krogdahl Å, Koppang EO, Anatomy, immunology, digestive physiology and microbiota of the salmonid intestine: Knowns and unknowns under the impact of an expanding industrialized production, *Fish and Shellfish Immunology* (2020), doi: https://doi.org/10.1016/j.fsi.2020.09.032.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

HB: Literature collection, writing of the manuscript and editing of figures.YL: Literature collection, writing of the manuscript and editing of figures.TK: Literature collection, writing of the manuscript and editing of figures.ÅK: Literature collection, writing of the manuscript and editing of figures.EOK: Literature collection, writing of the manuscript and editing of figures.

ournal pre-proof

Journal Pre-proof
Anatomy, immunology, digestive physiology and microbiota of the salmonid
intestine: Knowns and unknowns under the impact of an expanding
industrialized production
Håvard Bjørgen ^a , Yanxian Li ^b , Trond M. Kortner ^b , Åshild Krogdahl ^b and Erling Olaf Koppang ^a *
^a Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
^b Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
HB and YL: Equal contributions to the paper.
1

¹ **BBM**: brush border membrane, **CD**: cluster of differentiation, **FAs**: fatty acids, **GI**: gastro intestinal, **GPCRs**: Gprotein coupled receptors, **HDAC**: histone deacetylates, **IBD**: inflammatory bowel disease, **IEL**: intra-epithelial lymphocyte, **Ig**: immunoglobulin, **IL**: interleukine, **LPS**: lipopolysaccharide, **MHC**: major histocompatibility complex, **NF**: nuclear factor, **PAR**: proteinase-activated receptor, **PAS**: periodic acid Schiff, **PC**: pyloric caeca, pH: *pondus Hydrogenii*, **RAG**: recombination-activating gene, **SBMIE**: soy bean meal induced enteritis, **SCFAs**: single chain fatty acids, **TNF**: tumor necrosis factor.

18 Abstract

- Increased industrialized production of salmonids challenges aspects concerning 19 available feed resources and animal welfare. The immune system plays a key 20 21 component in this respect. Novel feed ingredients may trigger unwarranted immune responses again affecting the well-being of the fish. Here we review our current 22 knowledge concerning salmon intestinal anatomy, immunity, digestive physiology 23 and microbiota in the context of industrialized feeding regimes. We point out 24 knowledge gaps and indicate promising novel technologies to improve salmonid 25 intestinal health. 26
- 27

28 Keywords:

Atlantic salmon, digestive physiology, feed, immune system, microbiota, mucosalimmunity.

32 Introduction

In their natural environment, salmon species are carnivores with a lifecycle 33 comprising a pre-smoltification period in rivers followed by migration to sea and 34 subsequent return to the river to spawn. This free and challenging life is in stark 35 contrast to the confined and more crowded environment farmed fish experience. 36 37 Here, they are also fed a diet very different from the catch obtained by their freeliving relatives. Taken together, these life-altering changes may impact intestinal 38 health and integrity in farmed salmon. Crowded environments facilitate the spread of 39 pathogens, many of which are introduced to the host through the gastrointestinal 40 tract as recently reviewed in fish [2]. Breeding programs focusing on disease 41 resistance may alter the host's responsiveness to pathogens but also to non-42 pathogenic commensals, which again may lead to unwarranted intestinal 43 inflammatory responses. Last but not least, the dietary impact on gastrointestinal 44 health and function is well-established and well-studied also in salmonid fish. All 45 these factors may alone or together impact the intestinal microbiota [3-7]. 46

The on-going debate regarding pain reception in fish has prompted increasing 47 concern regarding fish welfare [8]. Intestinal health is a major issue in all animal 48 productions, also with respect to welfare [9]. If we induce unwarranted effects 49 through husbandry, it is our responsibility to identify such effects and seek to avoid 50 them. From own experience, we know that intestinal inflammatory conditions may be 51 highly troubling. If the fish experiences anything similar, it is imperative to avoid 52 intestinal inflammatory conditions. As clinical observations of such in fish are difficult 53 (for instance registration of diarrhea), we rely on other methods, primarily histological 54 examination from selected individuals in given populations. Here we review our 55 current knowledge of salmonid fish intestinal anatomy, immunology, digestive 56

physiology and reactions to feed in the context of unwarranted farming-induced
conditions with emphasis on immune reactions.

59

60 **1. Anatomy**

61 1.1 Gross anatomy

As recently reviewed by Hellberg (2019) [10], detailed information on the embryology 62 of the gastrointestinal tract of fishes is available from studies of the zebrafish (Danio 63 rerio) and the medaka (Oryzias latipes) [11-13]. There is also one study in the 64 Atlantic salmon that addresses different developmental stages and the impact of 65 soybean meal [14] and one study addressing the impact of climate and mass-66 specific feeding of salmon [13]. For information on the general framework of fish 67 ontogeny, the reader is referred to other reviews dedicated to the topic [15, 68 16].Nevertheless, in all vertebrates, the alimentary canal is formed as a tube 69 between the mouth and the anus with an embryology that seems well conserved 70 between vertebrates [17]. Different portions of this canal have specialized functions 71 72 which is reflected in its construction. From the mouth, this canal is divided into oral cavity, the pharynx, the esophagus, the stomach, the intestine and the anus. The 73 intestine is the focus of this review, and its gross anatomy has been confusing as 74 different authors have used different anatomical terminology to describe it. Especially 75 confusing are the terms fore-gut, mid-gut and hind-gut, as the criteria for these 76 distinctions have not been published. In zebrafish, Wallace et al. (2005) [18] 77 proposed a nomenclature dividing the intestine into three segments, namely 78 anterior, - mid, - and posterior intestine. The anterior intestine comprises the 79 esophagus and stomach when present. The mid-intestine is divided into a first and 80

81 second segment, where the second segment was proposed to resemble the mammalian ileum. Finally, the posterior intestine, which is very short in fish, was 82 proposed to correspond to the mammalian colon [18, 19]. Based on this 83 nomenclature, Løkka et al. (2013) [20] addressed the anatomy of the gastrointestinal 84 tract of salmon. Here, literature addressing the intestinal tract has frequently applied 85 the term "hind-gut". This term seems in most cases to correspond to the zebrafish 86 second segment of the mid intestine. "Fore-gut" seems to have been applied to the 87 zebrafish corresponding segment termed "first segment of the mid intestine". Studies 88 89 in salmonids addressing the segment corresponding to the posterior intestine in zebrafish seem missing, and thus no special terminology has been used. To 90 establish an anatomical nomenclature in salmonids which both reflected that of the 91 92 zebrafish and reflected the actual functions of the different segments, on both gross anatomical differences and histological characterizations, Løkka et al. (2013) [20] 93 proposed a nomenclature which provided an exact and referable reference for the 94 salmon intestinal anatomy (Fig. 1). From the pyloric part of the stomach, this system 95 divided the intestine into the first segment of the mid-intestine (with apertures to the 96 pyloric caecae); the first segment of the mid-intestine posterior to the apertures of 97 the pyloric caeca; the second segment of the mid-intestine and finally the short 98 posterior segment. This segment corresponds to the mammalian colon. Confusingly, 99 100 the term "hindgut" is often regarded as an equivalent to the mammalian colon, but this is thus not the case. 101

102 Several studies in salmon have shown that the second segment of the mid 103 intestine is immunologically more active than the other segments of the 104 gastrointestinal tract. Important immune gene transcripts are significantly higher 105 expressed in this portion [21-24]. In an investigation by Løkka et al. (2014) [25]

106 addressing transcript levels of several gene products of the immunoglobulin superfamily and RAG 2 in wild, - and in farmed un-vaccinated and vaccinated 107 salmon, the authors noted that "In all fish groups, there was a trend of higher 108 transcript levels in the second segment of the mid-intestine and the posterior 109 segment compared with the pyloric caeca and the first segments of the mid-intestine 110 for most of the investigated immune-related genes". Adverse immune reactions also 111 seem more prominent in this portion compared with other segments of the intestine. 112 For example, soybean meal induced enteritis appears much more frequently in the 113 second segment of the mid intestine compared with the other segments [26] [27]. 114

The suggested corresponding mammalian ileum is also immunologically very 115 active. The ileum is rich in immune cells and possesses extensive lymphoid tissues 116 organized in Peyer's patches. Here, organizations of B cells in follicles are found 117 surrounded by T cells. Towards the intestinal lumen, Peyer's patches are covered by 118 epithelial cells with many specialized antigen-sampling cells termed microfold cells or 119 M cells. Cells with some M-cell like functions have also been identified in the 120 salmonid second segment of the mid intestine, but not in the segment corresponding 121 to the first segment of the mid intestine [28]. Further, in this segment, macrophage-122 like cells were found to extent cytoplasmic protrusions between epithelial cells, 123 seemingly sampling material from the intestinal lumen [28]. This finding also 124 supports the assumption that the second segment of the mid intestine corresponds 125 to the immunologically active mammalian ileum. 126

127 1.2 Microanatomy

For purpose of the readability of the following section, the general histologicalconstruction of the Atlantic salmon intestine is presented in Fig. 2 where important

strucures are marked. In contrast to fish, the intestinal epithelium of mammals forms 130 crypts (crypts of Lieberkühn) and villi in the small intestines and crypts but no villi in 131 the colon. Epithelial cell proliferation occurs in the crypts, and from this stem cell 132 area, there is continuous proliferation and differentiation of the main cell phenotypes 133 in the intestinal epithelium, namely columnar cells, enteroendocrine cells, goblet cells 134 and Paneth cells [29]. In salmonids, no crypts have been identified [20], but 135 interestingly, similar structures have been identified in the intestine of the common 136 wolfish (Anarhichas lupus L.) [30]. Stem cell regions, as identified as areas of 137 138 proliferation in the salmonid gut, are located at the base of primary and secondary intestinal folds [20]. Columnar cells are most abundant, and goblet cells may be 139 identified using PAS staining [20]. Enteroendocrine cells have also been identified in 140 the salmonid gut [31]. Paneth cells (named after the Viennese physiologist Joseph 141 Paneth who first identified them) are present in a number of species but have not 142 been reported in fish. Paneth (1888) [32] identified these cells in the fundus pars of 143 the crypts of Lieberkühn and initially termed them "Körnchenzellen – or "cells with 144 small granula". These cells produce defensins, which are thought to be vital for 145 keeping the crypts of Lieberkühn germ-free and thus protecting the stem cell region. 146 We have tried to identify Paneth cells in salmon using staining methods to identify 147 granula, but so far, these efforts have been negative (E.O. Koppang, unpublished 148 149 results). However, it is worth noting that transcriptional data show intestinal production of β-defensins in salmonid intestine [33]. In mammals, a variety of 150 epithelial cells may produce β -defensins, whereas α -defensins are produced by 151 Paneth cells. Nevertheless, future studies should address the possible existence of 152 Paneth cells or Paneth-like cells in fish as this information would be essential in our 153 understanding of intestinal immunology in lower vertebrates. 154

As in mammals, enterocytes are polarized cells, attached to the basal 155 membrane and forming microvilli towards the intestinal lumen. It is thought that these 156 cells may develop into microfold cells or M cells. In mammals, such cells are typically 157 found covering Peyer's patches, and they lack microvilli. However, they may also be 158 found in villi [34]. M cells are specialized in sampling intestinal antigen. Cells with 159 certain M cell properties have been identified in salmonids [28], but in contrast to M 160 cells in mammals, they possess microvilli, and it has not been demonstrated that 161 they are capable of sampling particles as large as bacteria or yeast cells. In 162 163 experiments aiming at revealing such properties, Løkka and co-workers rather observed yeast uptake in macrophage-like cells both embedded within the 164 epithelium but also in the intestinal lumen [35]. Immune cells, commonly referred to 165 166 as intraepithelial lymphoid cells (IELs), are present in the salmonid intestinal epithelium. In mammals, most intraepithelial lymphocytes are T cells. Both $\alpha\beta$ - and 167 $\Upsilon \delta$ T cells are present. Dendritic $\Upsilon \delta$ T cells surveil the epithelium and may be 168 directly activated and respond either to $\Upsilon \delta$ ligands or epithelial stress signals [36, 169 37]. These cells are placed functionally between classical innate and adaptive 170 immune cells [37]. In salmonids, intraepithelial MHC class II-expressing cells were 171 identified by Koppang et al. (1998) [21] and CD3 positive cells were described in 172 2010 [38]. It has not been established if the MHC-class II positive cells were T cells, 173 174 but some of them might have been. In addition, some of them resembled macrophage-like cells. Fuglem et al. (2010) [28] identified macrophage-like cells 175 seemingly sampling luminal antigen, and Løkka et al. (2014) [35] described 176 macrophage-like cells in context with yeast cells after exposure both within the 177 epithelium and in the intestinal lumen. As for B cells, their majority consist of IgT 178 positive cells, whereas IgM positive cells seem merely present in the subepithelial 179

tissues [39]. Løkka et al (2014) observed no IgM positive intraepithelial cells in the 180 salmon but noted that Grove et al (2006) [40] observed such cells in the epithelium 181 of the Atlantic halibut (*Hippoglossus hippoglossus*). Also in the rainbow trout 182 (Oncorhynchus mykiss), IgM positive cells were observed in the lamina propria, 183 however, in the pyloric caeca, they could also be observed as intraepithelial 184 lymphocytes [41]. IgT positive cells were primarily localized as intraepithelial 185 lymphocytes [42, 43]. In salmon, as in most other fishes, the knowledge of mucosal 186 cell populations is primarily based on transcriptional analysis of intestinal wall 187 188 containing both epithelium and underlying lamina propria. Interestingly, much more knowledge about the general composition of different intraepithelial immune cells is 189 available with respect to the cloaca-based salmon bursa [44] compared with the 190 191 intestines. So, when moving from transcription studies to morphology, there is still a large potential for exploring the diversity of IELs in fish intestine. 192

193 The epithelium rests on the basal membrane which defines the barrier between the mucosal epithelium and the underlying lamina propria. In mammals, 194 studies have shown that this membrane is not solid but fenestrated, and the degree 195 of fenestration varies between different intestinal segments and is especially 196 prominent in relation to Peyer's patches [45]. It is believed that these disruptions 197 198 facilitate the passage of leukocytes between the epithelium and the underlying lamina propria. Further, this fenestration has been demonstrated to be dynamic and 199 responding to dietary conditions. In a study addressing fasting and non-fasting rats, 200 the authors noted that the fenestration of the intestinal basal membrane responded 201 202 to the dynamics of migrating leukocytes but also by regulating nutrient absorption, in particular lipids [46]. Similar studies have not been conducted in fish, but this 203 information is highly warranted. 204

At its surface towards the intestinal lumen, the epithelium is covered by a 205 glycocalyx layer. In addition to serving as an attachment layer for the covering 206 mucus, it is also important in preventing bacterial entry into the epithelium [47]. To 207 the best of our knowledge, studies addressing the intestinal glycocalyx in fish are 208 missing, but this layer has been addressed in gills [48]. The glycocalyx is covered by 209 a protective mucus layer which is formed by the activity of epithelial mucus cells [49]. 210 Together, the mucus and the glycocalyx form an important and selective barrier 211 between the enterocytes and the intestinal content (Fig. 3) [50]. Notably, the mucus 212 213 layer is rich in immunologically active molecules such as complement proteins, lysozyme, proteases, antimicrobial peptides and secretory immunoglobulins [51], 214 which are important for combatting pathogens while maintaining tolerance to 215 216 commensal microbes. A recent study in rainbow trout showed that the secretory IgT at the gill mucosal surface is functionally analogous to mammalian IgA in terms of 217 pathogen clearance and microbiota hemostasis [52]. It is unknown but likely that 218 salmonid secretory IgT plays a similar role also in the intestinal mucosal immunity. 219 In general, for all intestinal segments, the lamina propria is located beneath 220 the basal membrane and consists of connective tissue containing leukocytes. This 221 layer is followed by a thick sheet of connective tissue called the stratum compactum. 222 223 This layer is surrounded by the stratum granulosum which is rich in mast cells. The muscular layer is organized with an inner circular and outer longitudinal orientation of 224 the muscle fibers. There are some minor variations with respect to the different 225 intestinal segments [20] but these details are above the scope for this review. In the 226 227 salmon lamina propria, IgM positive cells, T cells, antigen-presenting cells and mast

cells may be found [25, 27, 39].

The uptake of antigens in the salmonid gut has been reviewed elsewhere [2]. 229 Of note, it has not been established though which mechanisms bacteria may enter 230 the organism through the mucosal surface. In mammals, an important part of the 231 intestinal immune system is the lymphatic vessels. Lymphatic vessels drain the 232 Payer's patches and the intestinal lymph nodes. Such structures are not present in 233 the fish intestines. The existence of lymphatic vessels in fish has been disputed [54], 234 but as referred to by Hellberg and co-workers, lymphatics have been described in 235 the zebrafish, and these authors also identified them in the common wolfish [55]. 236 237 Such vessels have so far not been described from salmonids. The clarification of their existence and function is warranted not only for the advancement of 238 understanding of salmonid intestinal immunity but also for our understanding of lipid 239 240 absorption though the gut where lymphatics play a central role in mammals.

241

242 **2.** Digestive function and responses to variation in diet composition

243 2.1 Digestion and absorption of nutrients

The physiological, chemical and enzymatic processes that collectively coordinate macro- and micronutrient digestion and absorption in fish have been reviewed extensively elsewhere [56-58]. A summary of the status of knowledge is provided here, with a specific focus on Atlantic salmon when detailed information is available.

After the digestive processes taking place in the stomach, the highly acidic digesta, also called chyme, is fed into the upper intestine at a controlled rate through the pyloric sphincter. Here, the digesta is mixed with secretions from the diffuse exocrine pancreas containing bicarbonate and digestive enzymes. As a result, the pH increases from about 4.8 in the stomach to about 8 in the first segment of the mid-intestine in salmon [59]. The digestive enzymes function to break down complex

254 dietary nutrients into smaller components that can be absorbed across the intestinal wall. Many digestive enzymes, in particular the proteolytic, are synthesized and 255 stored in inactive forms as proenzymes or zymogens. They become active after 256 secretion into the digestive tract where trypsin become active through the action of 257 enterokinase secreted by mucosal cells. The other proenzymes are activated by 258 trypsin. There seems to be isozymes of most, if not all, enzymes [58, 60]. The main 259 digestive enzymes secreted by the pancreatic tissue are the proteases trypsin, 260 chymotrypsin, elastase. collagenase. aminoand carboxy-peptidases, 261 phospholipases, cholesterol and wax ester hydrolases, as well as ribo- and 262 deoxyribonucleases [60]. Absence of a co-lipase dependent pancreatic lipase, 263 similar to the one present in mammals and birds, is indicated for a number of fish 264 species based on several studies [61, 62]. Amylase, responsible for digestion of 265 starch, is also a main pancreatic digestive enzyme, but has a lower activity in 266 carnivorous fish species, particularly in Atlantic salmon [63, 64]. This might be a 267 result of evolutionary adaptation to diet, since starch is an uncommon dietary 268 component for the strictly carnivorous salmon in the wild. Interestingly, the salmon 269 amylase has a seven amino acid deletion that could impair substrate binding [64]. 270 This might offer an explanation for the fact that salmon digest carbohydrates less 271 efficient than many other fish species. As a result, commercial salmon feeds typically 272 contain no more than 10% carbohydrates [65]. 273

In addition to pancreatic secretions, the digesta is also mixed with bile transported from the gallbladder and entering the digestive tract via the common bile duct posterior to the pyloric sphincter. The majority of bile acids in salmon are taurine-conjugated, with taurocholic acid being the predominant individual bile salt [66]. Bile salt concentrations in salmon digesta can be extremely high in the proximal

parts of the intestine, typically reaching levels up to 25% of the total dry matter 279 content [67-71]. The concentration decreases gradually throughout the intestine, 280 indicative of efficient reabsorption and recycling by yet unknown active and /or 281 passive uptake mechanisms. Bile acids work as physico-chemical detergents and 282 play a key role in emulsifying lipids, fat-soluble vitamins and other apolar 283 components in the diet or from endogenous sources, thereby allowing for efficient 284 hydrolysis by lipases. Bile salts also stabilize proteins, e.g. digestive enzymes, and 285 thereby help the enzymes resist autodigestion in the proximal sections of the 286 intestine [72]. After reabsorption of the bile salts in the distal intestine, digestion of 287 endogenous proteins will accelerate. 288

Dietary nutrients, comprising proteins, polypeptides, amino acids, lipids, 289 290 carbohydrates, vitamins, minerals and carotenoid pigments, are transported or otherwise absorbed from the intestinal lumen into the systemic circulation across the 291 brush border membrane (BBM) of the enterocytes lining the post-gastric alimentary 292 tract [56]. The enterocytes have both digestive and absorptive functions and are as 293 such of vital importance for proper function of the digestive system. The folded 294 nature of the BBM greatly increases the surface area and thereby the absorptive 295 capacity of the intestine. The cell membranes of the microvilli contain important BBM 296 digestive enzymes such as aminopeptidases, maltase, sucrases, trehalase, alkaline 297 phosphatases and monoglyceride lipases. The BBM digestive enzymes are 298 responsible for the final digestion of nutrients into small fragments ready for 299 absorption. Nutrient absorption across the BBM into the enterocytes can occur by 300 pinocytosis, simple diffusion following a concentration gradient, ion exchange or 301 active transport by more or less specific protein transporters [56, 58]. Simple 302 diffusion may also occur via the paracellular route through the tight junctions. In 303

304 salmon, the first segment of the mid-intestine with the pyloric caeca is the dominating 305 region of secretory and nutrient absorptive functions and roughly accounts for 70% 306 of the total nutrient absorption [73, 74]. However, nearly the entire length of the 307 salmon intestine has a functional BBM capable of nutrient transport [73]. Nutrient 308 uptake may therefore be more prominent in posterior regions of the intestine in 309 situations when the capacity of the proximal region is exceeded.

In general, mechanistic knowledge of nutrient absorption in fish is still 310 rudimentary compared to that of mammals. Among the macronutrients, most dietary 311 312 protein seems to be absorbed in the first segment of the mid-intestine as di- and tripeptides through the low-affinity/high-capacity H⁺-dependent PetT1 and the high-313 affinity/low-capacity PetT2 peptide transporters located at the BBM [56]. The Altantic 314 315 salmon PepT1 transporter has been cloned and functionally characterized, and has a broad substrate specificity for both neutral and charged di- and tripeptides [75]. 316 After absorption, most peptides are intracellularly hydrolyzed into free amino acids 317 and exit the enterocytes across the basolateral membrane and enter the circulatory 318 system. Some larger peptides or intact proteins may also be absorbed by pinocytosis 319 in the distal intestine [76]. This absorption has been suggested to be involved in the 320 recycling of digestive enzymes, or as part of the gut mucosal immune system and 321 antigen sampling. 322

Lipid absorption in fish is in general not well understood but is presumed to occur as in mammals with some deviations [77]. Emulsification is initiated in the stomach and continues after being supplied with bile salts and phospholipids in the bile in region of the pyloric ceaca. In Atlantic salmon, the emulsion droplets are acted upon by the lipases, producing free fatty acids (FAs) and glycerol. Short chain FAs (2-10 carbons) and glycerol are probably absorbed directly through the brush border

of the enterocytes, whereas medium and long-chain FAs must form micelles together 329 with bile salts and phospholipids before they can be efficiently absorbed. The 330 micelles, when in close vicinity of the BBM, disintegrate before the FAs are taken up 331 by the enterocytes via active transport and / or passive diffusion [56]. Both 332 membrane-bound and intracellular FA transporter proteins have been identified in 333 salmon [70, 78] but their relative contribution in guantitative aspects of lipid uptake 334 as well as their precise functions remain unknown. Inside the enterocyte, the FAs are 335 re-esterified and packaged together with protein to form lipoproteins [77]. Similar as 336 for the other macronutrients, the primary site for lipid uptake in salmon is the 337 proximal region with the pyloric caeca. However, chain length may affect where the 338 FAs are absorbed, with the mid intestine contributing relatively more to the 339 absorption of long-chain FAs than medium-chain FAs [74, 79]. 340

Most fish species can absorb a range of carbohydrate monomers, including 341 glucose, galactose and fructose, all reaching the blood via specific transporters in 342 the brush border and basolateral membrane, or by diffusion [56, 60]. Mechanistics of 343 glucose absorption has been most studied in fish to date, and gene sequences 344 encoding the apical-located Na⁺/glucose symporter SGLT1 have been identified in 345 many fish species. In salmon, SGLT1 has been identified at both transcript and 346 protein level [14, 80], and carried-mediated glucose uptake was found to be highest 347 348 in the pyloric caeca [73].

Present knowledge on the mechanisms of vitamin absorption in the GI tract of fishes is limited. Fat-soluble vitamins (A, D, E and K) and pigment carotenoids such as astaxanthin are thought to be incorporated into the micelles and absorbed when released as they disintegrate when toucing the BBM surface. Minerals represent a particular case in fish, as they in addition to the alimentary tract, also can also be

absorbed through the gills and skin [81]. For example, metal uptake through the gillsis highly interregulated with uptake in the alimentary tract [82].

356

2.2 Structural and functional responses to diet composition and fasting

The intestinal structure and function can respond rapidly and reversibly to changes in 358 dietary load and composition. For example, feed restriction in salmon rapidly reduces 359 the relative weight of the intestine, and also leads to changes in mucosal architecture 360 that effectively reduce the absorptive area [83]. Starvation causes accumulation of 361 362 digestive enzymes and bile in the pancreatic tissue and gallbladder, respectively, whereas feeding will promote emptying [84]. Enzyme secretion also appears to be 363 regulated according to diet composition. For example, diets containing high protein 364 365 levels, protein with low digestibility and/or antinutritional factors that inhibit proteases, can stimulate increased pancreatic secretion of trypsin [85-87]. The relationship 366 between dietary lipid and carbohydrate levels and the corresponding enzymatic 367 activity appears to be more complicated. In salmon, changes in dietary carbohydrate 368 levels have little effect on pancreatic secretion of amylase [64, 88]. Digestibility of 369 individual fatty acids seem to decrease with increasing chain length and increase 370 with increasing degree of desaturation [79]. 371

372

373 3. Adverse reactions to feed

From nature's side, the salmon is a migrating carnivore. However, in an
industrialized setting, salmon feed relies heavily on components obtained from
terrestrial plant production. This dietary shift has not come without certain costs. The
so far most severe adverse consequences have been the development of intestinal
adenocarcinoma with metastasis to different organs [89]. Such findings represent

however the exception. More commonly observed unwarranted feed effects are
inflammatory changes. They have in particular been observed with the administration
of standard soybean meal and have also been termed soybean meal induced
enteritis (SBMIE). Substitution of dietary fish oil with plant oils does not seem to
provoke inflammation but is rather associated with shortened mid intestinal folds in
the Atlantic salmon [24].

Over the last thirty years, we have seen a steady, major change in nutrient 385 sources and nutrient balance in salmon diets, from marine based and low lipid to 386 high plant based and high fat [65]. The change has occurred without sufficient 387 attention to the impact these changes might have on meeting the salmon's nutrient 388 requirements and the impact of alien plant compounds. In parallel to diet changes, 389 important gut health challenges have become apparent, emphasizing the need to 390 investigate possible relationships between gut health and diet. An ongoing 391 Norwegian research project, which was initiated with a field survey in salmon farms 392 along the coast of Norway, revealed a high incidence of two pathological conditions 393 which have clear links to dietary changes [90], i.e. inflammation in the second 394 segment of the mid intestine (MI2) (Fig. 4) and steatosis in the first (MI1), including 395 the pyloric caeca (Fig. 5). These conditions serve as examples of how diet may 396 397 affect the structure, function and health of the intestine. Steatosis of the mid-intestine seems to be related to a dietary deficiency of choline [91, 92]. Choline has until now 398 not been considered an essential nutrient for larger Atlantic salmon. The underlying 399 reason for this situation may be that biomarkers for capacity of lipid transport across 400 401 the intestinal mucosa has not been endpoints in any of the few studies conducted to define choline requirement. Moreover, important aspects of choline and lipid 402 metabolism, such as dependency on dietary lipid level and lipid quality, fish growth 403

rate and feed intake, and environmental temperature, have not yet beeninvestigated.

406

407 3.1 Intestinal inflammatory changes

The inflammation observed in the second segment of the mid intestine may be 408 induced by one particular antinutrient, or a combination of antinutrients. Most plant 409 feed ingredients contain several. Antinutrients are endogenous compounds in plant 410 feedstuffs that, when fed to animals, may reduce nutrient digestibility and utilization, 411 reduce feed intake and growth, alter the function of internal organs, and alter disease 412 resistance. The functions of the antinutrients in the plants are, supposedly, to protect 413 the plant from being eaten by animals, insects and microorganisms. Consequently, 414 the antinutrients may impair functions and health of the intestine, as well as of other 415 body organs and tissues. Legumes stand out amongst food plants, containing 416 several of the more potent antinutrients. Table 1 lists the major, relevant 417 antinutrients with potential to affect nutrition and health of fish. Standard varieties of 418 soybeans contain more antinutrients than other legumes used for animal feed. Even 419 though antinutrients got their name due to their effects on health, they may also have 420 beneficial effects. They may act as antioxidants, stimulate immune functions, and 421 422 have prebiotic effects, depending on the amount ingested.

423

Research on antinutritional effects in salmonids started in the late 1980's when a project was initiated to find whether soybean meal might serve as protein source for salmon production. The results showed low nutritional value [93, 94] for the standard soybean meals used for land production animals. Higher inclusion levels reduced growth and decreased both amino acid and fatty acid digestibility [95].

The most pronounced effect was, however, induction of a severe inflammation in the second segment of the mid intestine even at inclusion levels as low as 5% [83, 96, 97]. The more proximal intestinal regions were not affected [97, 98]. Later, also pea protein concentrates and other legume feed ingredients have been found to have the potential to induce similar symptoms of gut inflammation [99, 100].

434

Lack of purified antinutrients has hampered efforts to identify which ones are 435 responsible for the development of inflammation. Initially, several candidates were 436 suspected. For some years a reasonably priced soy saponin concentrate of 95% 437 purity was available, allowing use in salmon feeding studies. These studies identified 438 saponins as the key antinutrient responsible for development of the inflammation 439 [101]. Saponins are amphipathic molecules which compete with cholesterol for 440 uptake. They also interfere with cell membrane structures weakening the mucosal 441 barrier, and thereby allow influx of foreign compounds. As the inflammation induced 442 by purified saponins seemed less severe than when the saponins were given as an 443 integrated part of soybean meal, synergistic effects with other antinutrients were 444 suggested [102, 103]. Similar exposure studies with seabass (*Dicentrarchus labrax*) 445 and seabream (Sparus aurata), at juvenile and on-growing stages, have indicated 446 that these species are not responding with inflammation as the Atlantic salmon, 447 448 when fed purified saponins, although the sea bass juveniles showed some alterations in digestive and immune functions [104-107]. The authors suggested that 449 these alterations might affect the fish at later stages, but this has not yet been 450 investigated. 451

452 After the first observations of diet-induced enteritis, this condition has become 453 a valuable, inducible condition for investigation of basic mechanisms including

mucosal immune responses of the intestine, in particular the distal compartment, or 454 the second segment of the mid intestine, which harbors the most complex 455 conglomeration of barrier functions in the salmon. The results of the studies of 456 soybean induced enteritis under varying dietary and other environmental conditions 457 and at different life stages of the fish, have thrown light on the mechanisms, 458 complexity and dynamics of the intestinal mucosa. The following paragraphs 459 summarize the results of studies conducted over the last thirty years with a focus on 460 understanding underlying mechanisms of this enteritis and possible dietary. 461

462 preventive measures.

The symptoms of inflammation in the second segment of the mid intestine are 463 characterized by shortening of mucosal folds, loss of normal vacuolization of 464 enterocytes, widening of lamina propria with increased amounts of connective tissue 465 and a profound infiltration of inflammatory cells. Electron microscope images reveal 466 severe shortening and thinning of the brush border [97]. A reduction in tissue weight 467 is also a clear symptom [101]. Similar symptoms have been observed in rainbow 468 trout (Oncorhynchus mykiss) [108] and Arctic charr (Salvelinus alpinus) after feeding 469 with soybean containing diets [109], whereas other fish species appear only 470 temporary or unaffected by inclusion standard soybean meal qualities in the diets 471 [110, 111]. Atlantic cod (Gadus morhua) seem to tolerate soybean meal with 472 473 saponins quite well showing no indications of intestinal inflammation [112]. In Atlantic salmon the first pathological changes after initiation of feeding a 474

diet with soybean meal, limited to the second segment of the mid intestine, may be
observed as early as after two days. Within seven days, all mentioned symptoms are
apparent, and they are increasing in severity at least until 21 days after initiation of
soybean feeding [113, 114]. The symptoms disappear gradually after termination of

feeding with soybean meal, and the tissue appears normal again after about three 479 weeks [83]. The inflammation causes severe functional losses of the brush border, 480 indicated by loss of activity of 5' nucleotidase, Mg²⁺-ATPase, alkaline phosphatase, 481 leucine aminopeptidase, and several disaccharidases. Also the intracellular 482 structures show impairment as indicated by loss of activity in alkaline and acid 483 phosphatase, non-specific esterase and alanine aminopeptidase [98, 115]. 484 Moreover, presence of monocytes, including macrophages, as well as of neutrophilic 485 granulocytes and IgM positive cells, increases in the lamina propria. In a more recent 486 487 study [116], further details of the immune cells involved in the inflammation were revealed. Soybean meal in the diets increased expression of a complex polypeptide 488 (CD3pp), CD4 and CD8b. Increased reactivity for extracellular IgM in the lamina 489 490 propria and IgM positive material between the epithelial cells at the tips of the folds were also observed. The authors suggested that the observations could be due to 491 leakage of IgM through an abrogated epithelial barrier and that this example of a 492 food-sensitive enteropathy could involve T-cell-like responses. The observed up-493 regulation of genes and regulators related to production of cytokines, NFkB and 494 TNFalpha, IL-17 and other regulators of T-cell function [103, 117] supports this 495 theory. The latter work also showed activation of Annexin-1, an important anti-496 inflammatory and gastroprotective compound [103]. The results of the work of De 497 498 Santis et al (2015) are in line with the results reviewed above [118]. The antinutrients in the soybean meal seem to reduce nutrient digestibilities 499

500 by affecting epithelial cell differentiation in the second segment of the mid intestine 501 and thereby impairing digestive functions by reducing presence of nutrient 502 transporters and regulators of water balance (e.g. aquaporin, guanylin). Also

expression of genes involved in a range of metabolic processes, e.g. in lipid, bile and
steroid metabolism, are severely down-regulated [78, 103, 114, 119].

Not only the digestive, metabolic and immune functions but also the many other elements of the mucosal barrier functions are affected in the inflamed intestine. The work of Kortner et al. (2012) showed induction of the complement and the respiratory burst complex which paralleled a down-regulation of genes for free radical scavengers and iron binding proteins. Marked down-regulation of xenobiotic metabolism was also observed, possibly increasing vulnerability of the intestinal tissue to a wide range of organic compounds [103].

Many of the observed functional effects of legume antinutrients are 512 supposedly closely linked to, and possibly a consequence of, the increase in cell 513 514 division and migration of the cells towards the tip of the intestinal fold where shedding results in shorter lifetime of the cells and limited time for cell differentiation. 515 Decreased migration time, with less time for differentiation, is well documented on 516 both histological and molecular levels [103, 120, 121]. The estimated time to reach 517 the tip of the mucosal fold in the second segment of the mid intestine was 112 and 518 36 days for fish fed a high fishmeal diet kept at 8 and 12°C, respectively. In fish fed a 519 diet with 25% soybean meal, the time was reduced to about 16 days, irrespective of 520 environmental temperature, i.e. 8 and 12°C [120]. Increased cell division increases 521 demand for polyamines. Accordingly, up-regulation of arginase and ornithine 522 decarboxylase has been shown. 523

A study by Krogdahl et al. [115], showed increase in faecal trypsin-like activity with increasing soybean inclusion in the diet. This observation has later on been found to be linked to activation of trypsin-like enzymes in the mucosa which sloughs off at a high rate from the inflamed tissue [122]. Trypsin and other serine proteinases

are known as key initiators of inflammation in animals through modulation of
proteinase-activated receptor 2a (PAR-2). Upregulation was observed in the first
days after the introduction of soybean meal in the diet [115], indicating a role in the
initial stages of the inflammation, and down-regulation in the more chronic stages
(after three weeks), suggesting a desensitization of the receptor.

533 Most of the experiments done with Atlantic salmon to understand effects of soybean antinutrients and reveal effects on functional characteristics of the intestine 534 have been conducted with fish in saltwater, or late in the freshwater phase. Very few 535 have been conducted with fish at earlier stages. One exception is the study of 536 Sahlman et al. with fish from hatching and 14 weeks onward [14]. The goal was to fill 537 knowledge gaps regarding ontogeny of the structure and functions of the gastro-538 intestinal tract, of utmost importance for successful introduction of alternative feed 539 ingredients in salmon aquaculture. The fish were exposed to a high marine diet as 540 well as a diet with 17% soybean meal level, well above the level causing enteritis in 541 fish at later developmental stages. The digestive system of Atlantic salmon alevins 542 was morphologically distinct with an early stomach, liver, pancreas, anterior and 543 posterior intestine already seven days post hatch. About one week before start 544 feeding, and before the yolk sac was empty, gastric glands and pyloric caeca were 545 546 observed. At the same time expression of genes of digestive enzymes and nutrient transporters increased. In contrast to post-smolt Atlantic salmon, inclusion of SBM 547 did not induce intestinal inflammation in the juveniles, nor or loss of function [14]. 548 Similar observations were made when pure soya saponins were fed to juveniles [70, 549 550 123]. Moreover, growth performance in these young fish responded positively to saponin supplementation [123], also this in contrast to salmon at later stages. The 551 results suggest that the Atlantic salmon gut's immune apparatus is immature at the 552

earlier life stages and does not respond to influx of alien compounds as the more
mature intestine. Studies of the ontogeny of key immune molecules in the rainbow
trout have shown fairly early expression post fertilization [124], but this does not
imply that the immune system is competent.

Another intriguing observation regarding development of soybean meal 557 induced enteritis was made in a study with rainbow trout, a species showing very 558 similar responses to soybean meal as the Atlantic salmon [121]. Two populations of 559 fish were compared, one being a local unselected strain kept on a regular trout diet, 560 and the other being a local strain selected for increased growth rate over four 561 generations on an all plant diet. When the two strains were given a diet with 19% 562 soybean meal, the unselected individuals grew slower than the selected and showed 563 all signs of soybean induced enteritis. In the fish from the selection program, there 564 were no indications of enteritis. The results indicate the ability of an animal species 565 to adapt to dietary challenges over time. 566

567

568 3.2 Lipid malabsorption in Atlantic salmon

During the last 20 years, salmon farmers have reported symptoms indicating an 569 intestinal problem, characterized by pale and foamy appearance of the the 570 enterocytes of the first segment of the mid-intestine (MI1), including the pyloric caeca 571 (PC) [127, 128]. The symptoms, also called steatosis, are a result of intracellular 572 accumulation of lipid (triacylglycerol) droplets [92]. Very recently, the steatosis, was 573 574 shown to be due to a deficiency of dietary choline [91, 92, 129, 130]. The symptoms increase with increasing level of plant ingredients in the diet, strongly suggesting that 575 they are related to the high plant content of today's salmon feeds. In practical terms, 576

diets with < 5-10% fish meal will be severely deficient in choline if not supplemented. 577 The choline requirement will most likely vary with production conditions such as 578 dietary lipid level and quality, growth rates and temperature, but such aspects have 579 not been studied until now The recent results regarding choline requirement have 580 also greatly accentuated the need to understand how lipids are transported from the 581 intestine to the peripheral tissues in Atlantic salmon. It has long been a debate if 582 lymphatic vessels in fish exist or not [131]. The work of Denstadli et al. [132] 583 suggests that the portal vein is an important transport route for lipid in Atlantic 584 585 salmon, but that also other routes are possible.

586 3.3 Inflammation and carcinogenesis

Chronic inflammation, as caused by for instance anti-nutrients, may over time induce 587 additional side-effects. Dale et al. (2009) [89] described adenocarcinoma in 588 broodstock salmon intestine following the inflammation – dysplasia – carcinoma 589 sequence. Enterocytes are polarized cells with their nuclei located proximal towards 590 the basal membrane. Following dysregulation of the cells, nuclei may change their 591 location within the cells, and the term dysplasia is used to describe this 592 phenomenon. Enterocyte dysplasia typically occurs in human patients suffering from 593 inflammatory bowel disease (IBD). The next stage in an inflammation - dysplasia -594 carcinoma sequence will be dislocation of enterocytes below the basal membrane 595 [133]. These dislocated epithelial cells may, or may not, develop into tumors. 596 Recently, Bjørgen et al. (2018) [134] identified dislocated epithelial cells in fish fed 597 commercial fish feed. Approximately at the same time, Mosberian-Tanha et al (2018) 598 599 [135] described similar findings but argued that seemingly dislocated epithelial cells were macrophages that had engulfed epithelial cells and migrated beneath the basal 600 membrane. Anyhow, in the case of tumor development, the course of events was 601

established by Dale et al. (2009) [89] who showed that solid tumors with metastasis
developed in affected fish. In yet a recent study, Bjørgen et al. (2019) [27]
demonstrated that the tumor microenvironment as defined by the presence of
different leukocyte populations closely resembled that of human adenocarcinoma.
The reactions to chronic intestinal inflammation and its consequences thus seem
astonishingly similar between very distant species (fish and man).

608

609 **4. Microbiota – new feed**

It is well recognized in human medicine, that the gut microbiota may play pivoting
roles for gut immune function and health in particular regarding inflammatory
conditions [136, 137]. However, present knowledge on gut microbiota in the fish
intestine, and its role in for development of feed induced enteritis and other
pathological conditions, is very limited. The following review of literature presenting
relevant studies of gut microbiota in fish, with particular emphasis on Atlantic salmon,
underlines this situation.

Intestinal microbiota, comprising dense populations of diverse microorganisms 617 including bacteria, archaea, viruses and fungi, are located in two major 618 compartments, the digesta and the mucus. It intimately interacts with the host in 619 many ways, from food digestion and absorption [138] to lipid metabolism and energy 620 balance [139, 140]. The intestinal microbiota is, in various aspects, closely 621 connected to the intestinal function and health. It has become a therapeutic target for 622 623 intestinal diseases in humans like inflammatory bowel disease [141, 142] and Clostridium difficile infection [143]. Similar to the findings in germ-free mice [144, 624 145], intestinal microbiota has also been demonstrated to be an essential element in 625 the development of normal intestinal structure and function in zebrafish [146-148]. 626

For instance, the intestinal epithelium of germ-free zebrafish, compared to normal 627 fish, is arrested in its differentiation, as revealed by the lack of brush border intestinal 628 alkaline phosphatase activity, the maintenance of immature patterns of glycan 629 expression and a paucity of goblet and enteroendocrine cells [147]. Furthermore, 630 intestinal microbiota interacts directly or indirectly with the intestinal immune system 631 to induce pro- or anti-inflammatory responses, playing a fundamental role in the 632 maintenance of homeostasis of intestinal immune responses. The interaction may 633 take place via direct contact between microbes and intestinal epithelial cells [149] or 634 635 immune cells [150], or via microbial-derived metabolites such as lipopolysaccharide (LPS) [146], polysaccharide A (PSA) [151] and short-chain fatty acids (SCFAs) [152, 636 153]. The SCFAs, mainly acetate, propionate, and butyrate, are versatile microbial 637 metabolites produced under anaerobic fermentation of dietary fiber and protein [154]. 638 In mammals, the SCFAs, butyrate in particular, are well-known for the anti-639 inflammatory effects via inhibition of histone deacetylates (HDAC) and activation of 640 G-protein coupled receptors (GPCRs) [155]. A recent study in zebrafish indicates 641 that the anti-inflammatory effects of butyrate is most likely a conservated 642 characteristic in vertebrates [156]. Besides dialoguing with the local immune system, 643 the intestinal microbiota also interacts with the systemic immune system. Exposure 644 to antibiotics in early life has been shown to impair antibody responses to vaccines in 645 646 later life in mice. However, inoculation with the commensal microbiota following the antibiotic exposure restored the response [157]. In salmonids, sphingolipids 647 produced by Flectobacillus major, a predominant symbiont at the gill and skin 648 mucosal surfaces of rainbow trout, were able to increase the proportion of IgT+ to 649 IgM+ B cells in the head kidney when administered intravenously [158]. 650

Given the immunomodulatory effects of intestinal microbiota, dietary 651 supplementation of microbial-derived products has been applied to mitigate intestinal 652 inflammation in Atlantic salmon. For instance, dietary supplementation of two lactic 653 acid bacteria (Lactococcus lactis and Carnobacterium maltaromaticum) was found to 654 diminish the enteritis induced by diets containing 38% soybean meal [159], whereas 655 the addition of Bactocell[®], a commercial probiotic product containing *Pediococcus* 656 acidilactici CNCM MA18/5M, abated an intestinal inflammation chemically induced 657 by anal intubation with oxazolone [160]. Bacterial meal and cell wall fractions 658 produced from Methylococcus capsulatus grown on natural gas were also shown to 659 prevent the enteritis induced by 20% soybean meal [161-163]. Besides bacteria, 660 dietary inclusion of yeast (Candida utilis) was also reported to counteract the enteritis 661 induced by 20% soybean meal [164]. However, later studies showed that the same 662 dose of Candida utilis was unable to counteract the enteritis induced by 20% [165] or 663 40% [166] soybean meal. These results provide evidence that microbiota is a 664 promising target that can be selectively manipulated to improve the fish gut health 665 status. However, the mode of actions behind these microbial-derived products 666 remains unexplored. A better understanding of factors influencing the dynamics of 667 intestinal microbiota composition and function will allow for targeted engineering of 668 microbiota to sustain a healthy gut. Thanks to the advances in the sequencing 669 670 technologies in last decade, there has been a great increase in the number of molecular-based studies of salmonid intestinal microbiota. Here we summarize 671 important findings from recent studies and highlight knowledge gaps that need to be 672 filled in. 673

Like in mammals [167, 168], the salmon intestinal microbiota also shows a
spatial heterogeneity in its composition [169]. Microbial communities are different not

only along the intestinal tube, but also between digesta and mucosa within the same 676 intestinal segment. Typically, the microbial richness and diversity are lower in the 677 intestinal mucosa than digesta [170-172], suggestive of selection pressure from the 678 host [173]. The salmon intestinal microbiota is influenced by many factors including, 679 but not limited to, developmental stages [174, 175], diets [3, 5, 176], rearing 680 environments [4], antibiotics [177] and genetics [7]. In the early developmental 681 stages in the freshwater, the salmon intestinal microbiota seems to be mostly 682 dominated by Proteobacteria, Bacteroidetes, Firmicutes and Tenericutes. As the 683 684 salmon enter the seawater and grow older, the abundance of Bacteroidetes and Firmicutes decreases while the abundance of Tenericutes and Spirochaetes 685 increases [6, 174, 175]. The intestinal microbiota of salmon in the seawater, 686 especially the adult salmon, is often predominated by a few phylotypes including 687 Allivibrio (Proteobacteria), Photobacterium (Proteobacteria), Mycoplasma 688 (Tenericutes) and Brevinema (Spirochaetes) [174, 175, 178-180], resulting in lower 689 microbial richness in the later life stages. Aliivibrio and Photobacterium, both 690 belonging to the Vibrionaceae family, are common bacterial inhabitants in the 691 seawater. Their colonization in the salmon intestine may be facilitated by the 692 seawater drinking behavior of post-smolt salmon to prevent dehydration in a 693 hyperosmotic environment. In contrast, Mycoplasma tended to be rare [181] or 694 695 absent [179, 182] in the surrounding seawater where the salmon were sampled. Mycoplasma seems to be particularly well-adapted to the intestinal environment of 696 Atlantic salmon [181, 183]. Notably, *Mycoplasma* also sporadically predominates 697 intestinal microbial community of Chinook salmon (Oncorhynchus tshawytscha) [184] 698 and rainbow trout [185-188]. Known for its small compact genome and limited 699 biosynthesis capacities, Mycoplasma often forms obligate parasitic or commensal 700

relationships with its host to obtain necessary nutrients [189]. *Mycoplasma* is likely a
commensal microbe in the salmonid intestine whose ecological and functional
significance remains to be revealed. *Brevinema* was recently reported to be
selectively enriched in the intestinal mucosa of Atlantic salmon and associated with
the immune gene expressions in the distal intestine [190]. Captive rearing of the
salmon seems to favor the colonization of *Brevinema* in the intestine, which is
impaired when salmon is translocated from hatchery to natural conditions [181].

Diet is a key factor in shaping the intestinal microbiota of fish. Different dietary 708 components may selectively promote or suppress the growth of certain microbial 709 clades, which in turn could produce profound effects on the host health and disease 710 resistance [143, 191]. The use of alternative feed ingredients for fishmeal and fish oil 711 in salmon feeds can result in altered intestinal microbiota [3, 5, 176, 192]. For 712 instance, less-refined plant-based ingredients such as soybean meal seemed to 713 selectively increase the abundance of lactic acid bacteria in the salmon intestine [3, 714 5, 192], whereas insect (Hermetia illucens) larvae meal was found to increase the 715 abundance of specific microbial clades including Actinomyces, Bacillus, 716 717 Brevibacterium, Corynebacterium and Enterococcus in the salmon [190] and rainbow trout intestine [193, 194]. Notably, diet modulates digesta- and mucosa-associated 718 719 intestinal microbiota to differing degrees. The mucosa-associated microbiota seems to more resilient to dietary changes [3, 172, 180, 194-196]. It is believed that 720 mucosa-associated microbiota may play a more crucial role in influencing the host 721 physiological activities as these microbes can interact both directly and indirectly with 722 the intestinal epithelial barrier, whereas the more transient digesta-associated 723 microbiota can only interact indirectly [173]. As such, profiling digesta-associated 724 microbiota alone, which is a common practice in microbiota studies, may obscure the 725

response and importance of intestinal microbiota to dietary changes. Concurrent
profiling of digesta- and mucosa-associated intestinal microbiota should be
performed whenever feasible so that the response of intestinal microbiota to dietary
changes can be fully disclosed.

While marker-gene sequencing has enabled reliable and affordable taxonomic 730 profiling of intestinal microbiota, there is a knowledge gap on the functional 731 implications of changes in the intestinal microbiota induced by dietary shifts. 732 Collecting metadata related to host responses and phenotypes of interests and 733 identifying their associations with changes in the intestinal microbiota is the first step 734 towards discovering keystone microbes that are pivotal to intestinal functions and 735 health. Combining marker-gene surveys with other meta-omics approaches, such as 736 shotgun metagenomics, metatranscriptomics and metabolomics, will add a new 737 dimension to the microbial profiling in answering the question: what are the microbes 738 doing. In particular, microbial metabolites play critical roles in bridging the dialogue, 739 or the signaling pathways, between the intestinal microbiota and host. Coupling 740 taxonomic profiling with metabolomics is a promising approach to gain functional 741 insights and translational results, especially when the metabolites of interest can be 742 extracted from natural products or synthesized. Establishing germ-free salmonid 743 744 models will allow for testing hypotheses generated from the omics data and establishing causality between intestinal microbiota and host responses. However, 745 germ-free fish models so far can only be maintained in the larval stage [197], which 746 greatly limits their applications when it comes to studying the interactions between 747 diet and microbiota. 748

749 **5. Sum**

750	In an increasing industrialised salmonid production, a key component to animal
751	welfare, general health and growth, is a well-functioning gastrointestinal system. To
752	understand its construction and function is thus of major importance for both the
753	academic community and the industry. We still lack basic key knowledge regarding
754	its construction and function, and our ability to solve the problems that we observe,
755	and thus contributing to improved animal health and welfare, are still limited. In
756	addition, the following knowledge gaps deserve attention in future studies:
757	1. Effects of vitamin and mineral deficiencies and excess on intestinal function and
758	health are largely unknown.
759	2. Anatomical and physiological mechanisms involved in lipid transport have not
760	been clarified.
761	3. The route of enzymes from the pancreatic tissue to the intestinal lumen has not
762	been described.
762 763	been described.4. The role of supranuclear vacuoles present in the distal most segments of a well
763	4. The role of supranuclear vacuoles present in the distal most segments of a well
763 764	4. The role of supranuclear vacuoles present in the distal most segments of a well fed Atlantic salmon had not been described, i.e. whether they transport nutrients,
763 764 765	4. The role of supranuclear vacuoles present in the distal most segments of a well fed Atlantic salmon had not been described, i.e. whether they transport nutrients, intact proteins, endogenous enzymes, antigens, or have other purposes. They
763 764 765 766	4. The role of supranuclear vacuoles present in the distal most segments of a well fed Atlantic salmon had not been described, i.e. whether they transport nutrients, intact proteins, endogenous enzymes, antigens, or have other purposes. They disappear when the tissue is inflamed, and when the fish is starved.
763 764 765 766 767	 The role of supranuclear vacuoles present in the distal most segments of a well fed Atlantic salmon had not been described, i.e. whether they transport nutrients, intact proteins, endogenous enzymes, antigens, or have other purposes. They disappear when the tissue is inflamed, and when the fish is starved. Most antinutrients in plant feedstuffs exerts their main effect in the intestine, but
763 764 765 766 767 768	 The role of supranuclear vacuoles present in the distal most segments of a well fed Atlantic salmon had not been described, i.e. whether they transport nutrients, intact proteins, endogenous enzymes, antigens, or have other purposes. They disappear when the tissue is inflamed, and when the fish is starved. Most antinutrients in plant feedstuffs exerts their main effect in the intestine, but present knowledge on their effects in the fish intestine is limited to a few of these
763 764 765 766 767 768 769	 The role of supranuclear vacuoles present in the distal most segments of a well fed Atlantic salmon had not been described, i.e. whether they transport nutrients, intact proteins, endogenous enzymes, antigens, or have other purposes. They disappear when the tissue is inflamed, and when the fish is starved. Most antinutrients in plant feedstuffs exerts their main effect in the intestine, but present knowledge on their effects in the fish intestine is limited to a few of these The immunological explanation for lack of saponin induced enteritis in young fish
763 764 765 766 767 768 769 770	 The role of supranuclear vacuoles present in the distal most segments of a well fed Atlantic salmon had not been described, i.e. whether they transport nutrients, intact proteins, endogenous enzymes, antigens, or have other purposes. They disappear when the tissue is inflamed, and when the fish is starved. Most antinutrients in plant feedstuffs exerts their main effect in the intestine, but present knowledge on their effects in the fish intestine is limited to a few of these The immunological explanation for lack of saponin induced enteritis in young fish should be clarified

- knowledge concerning construction and function of the gastrointestinal system,
- this research may be of great benefit to sustainable aquaculture production.

Funding:

- We thank FHF - Norwegian Seafood Research Fund, project GutMatters, FHF
- project no. 901435, for economic support.

		Journal Pre-proof		
781				
782	32 References			
783	1.	Bilski, J., et al., Exploiting significance of physical exercise in prevention of gastrointestinal		
784		disorders. Current Pharmaceutical Design, 2018. 24(18): p. 1916-1925.		
785	2.	Løkka, G. and E.O. Koppang, Antigen sampling in the fish intestine. Developmental &		
786		Comparative Immunology, 2016. 64: p. 138-149.		
787	3.	Gajardo, K., et al., Alternative protein sources in the diet modulate microbiota and		
788		functionality in the distal intestine of Atlantic salmon (Salmo salar). Applied and		
789		Environmental Microbiology, 2016: p. AEM. 02615-16.		
790	4.	Dehler, C.E., C.J. Secombes, and S.A.M. Martin, <i>Environmental and physiological factors</i>		
791		<i>shape the gut microbiota of Atlantic salmon parr (Salmo salar L.).</i> Aquaculture, 2017. 467 : p.		
792	F	149-157.		
793 794	5.	Schmidt, V., et al., Influence of fishmeal-free diets on microbial communities in Atlantic		
794 795		salmon (Salmo salar) recirculation aquaculture systems. Appl Environ Microbiol, 2016. 82 (15): p. 4470-4481.		
795 796	6.	Webster, T.M.U., et al., Interpopulation Variation in the Atlantic Salmon Microbiome Reflects		
797	0.	Environmental and Genetic Diversity. Applied and Environmental Microbiology, 2018. 84 (16).		
798	7.	He, X.P., S.R. Chaganti, and D.D. Heath, <i>Population-Specific Responses to Interspecific</i>		
799		Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations.		
800		Microbial Ecology, 2018. 75 (1): p. 140-151.		
801	8.	Mather, J.A., Ethics and Care: For Animals, Not Just Mammals. Animals, 2019. 9(12): p. 1018.		
802	9.	Kraimi, N., et al., Influence of the microbiota-gut-brain axis on behavior and welfare in farm		
803		animals: A review. Physiology and Behavior, 2019: p. 112658.		
804	10.	Hellberg, H., Teleost gut morphology in sickness and health, with emphasis on mast cell		
805		ontogeny and alimentary canal development in common wolfish, Anarhichas lupus Linnaeus,		
806		1758, in Department of Anatomy. 2019, Norwegian University of Life Sciences.		
807	11.	Wallace, K.N. and M. Pack, Unique and conserved aspects of gut development in zebrafish.		
808		Developmental Biology, 2003. 255 (1): p. 12-29.		
809	12.	Kobayashi, D., et al., Development of the endoderm and gut in medaka, Oryzias latipes.		
810		Development, Growth & Differentiation, 2006. 48(5): p. 283-295.		
811	13.	Beauchamp, D.A. Bioenergetic ontogeny: linking climate and mass-specific feeding to life-		
812		cycle growth and survival of salmon. in American Fisheries Society Symposium. 2009.		
813	14.	Sahlmann, C., et al., Ontogeny of the digestive system of Atlantic salmon (Salmo salar L.) and		
814	4 5	effects of soybean meal from start-feeding. Plos One, 2015. 10 (4).		
815	15.	Penaz, M., A general framework of fish ontogeny: a review of the ongoing debate. J Folia		
816 817	16.	Zoologica, 2001. Zapata, A., et al., <i>Ontogeny of the immune system of fish</i> . J Fish shellfish immunology, 2006.		
818	10.	20 (2): p. 126-136.		
819	17.	De Santa Barbara, P., G.R. Van Den Brink, and D.J. Roberts, <i>Development and differentiation</i>		
820	17.	of the intestinal epithelium. Cellular And Molecular Life Sciences, 2003. 60 (7): p. 1322-1332.		
821	18.	Wallace, K.N., et al., Intestinal growth and differentiation in zebrafish. Mechanisms of		
822	-01	Development, 2005. 122 (2): p. 157-173.		
823	19.	Ng, A.N., et al., Formation of the digestive system in zebrafish: III. Intestinal epithelium		
824		morphogenesis. Developmental Biology, 2005. 286 (1): p. 114-135.		
825	20.	Løkka, G., et al., Intestinal morphology of the wild Atlantic salmon (Salmo salar). Journal of		
826		Morphology, 2013. 274 (8): p. 859-876.		
827	21.	Koppang, E., et al., Differing levels of Mhc class II & chain expression in a range of tissues		
828		from vaccinated and non-vaccinated Atlantic salmon (Salmo salarL.). Fish Shellfish Immunol,		
829		1998. 8 (3): p. 183-196.		

830	22.	Koppang, E., et al., Expression of Mhc class I mRNA in tissues from vaccinated and non-
831		vaccinated Atlantic salmon (Salmo salarL.). Fish Shellfish Immunol, 1998. 8 (8): p. 577-587.
832	23.	Harstad, H., et al., Multiple expressed MHC class II loci in salmonids; details of one non-
833	-	classical region in Atlantic salmon (Salmo salar). BMC Genomics, 2008. 9 (1): p. 193.
834	24.	Moldal, T., et al., Substitution of dietary fish oil with plant oils is associated with shortened
835		mid intestinal folds in Atlantic salmon (Salmo salar). BMC Veterinary Research, 2014. 10 (1):
836		p. 60.
837	25.	Løkka, G., et al., Immune parameters in the intestine of wild and reared unvaccinated and
838	23.	vaccinated Atlantic salmon (Salmo salar L.). Developmental & Comparative Immunology,
839		2014. 47 (1): p. 6-16.
840	26.	Van den Ingh, T., et al., Effects of soybean-containing diets on the proximal and distal
840 841	20.	intestine in Atlantic salmon (Salmo salar): a morphological study. Aquaculture, 1991. 94 (4):
842		p. 297-305.
843	27.	p. 297-503. Bjørgen, H., et al., Tumor microenvironment and stroma in intestinal adenocarcinomas and
843 844	27.	
		associated metastases in Atlantic salmon broodfish (Salmo salar). Veterinary Immunology
845	20	and Immunopathology, 2019. 214 : p. 109891.
846	28.	Fuglem, B., et al., Antigen-sampling cells in the salmonid intestinal epithelium.
847	20	Developmental & Comparative Immunology, 2010. 34 (7): p. 768-774.
848	29.	Ayabe, T., et al., The role of Paneth cells and their antimicrobial peptides in innate host
849		<i>defense.</i> 2004. 12 (8): p. 394-398.
850	30.	Hellberg, H. and I. Bjerkas, The anatomy of the oesophagus, stomach and intestine in
851		common wolffish (Anarhichas lupus L.): a basis for diagnostic work and research. Acta
852		Veterinaria Scandinavica, 2000. 41(3): p. 283-298.
853	31.	Koppang, E., et al., Expression of insulin-like growth factor-I in the gastrointestinal tract of
854		Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 1998. 18(2): p. 167-175.
855	32.	Paneth, J., Ueber die secernirenden Zellen des Dünndarm-Epithels. Archiv für mikroskopische
856		Anatomie, 1887. 31 (1): p. 113.
857	33.	Harte, A., et al., Five subfamilies of 6-defensin genes are present in salmonids: Evolutionary
858		insights and expression analysis in Atlantic salmon Salmo salar. Developmental &
859		Comparative Immunology, 2020. 104: p. 103560.
860	34.	Jang, M.H., et al., Intestinal villous M cells: an antigen entry site in the mucosal epithelium.
861		Proceedings of the National Academy of Sciences, 2004. 101 (16): p. 6110-6115.
862	35.	Løkka, G., et al., Uptake of yeast cells in the Atlantic salmon (Salmo salar L.) intestine.
863		Developmental & Comparative Immunology, 2014. 47 (1): p. 77-80.
864	36.	Ishikawa, H., et al., Curriculum vitae of intestinal intraepithelial T cells: their developmental
865		and behavioral characteristics. Immunological Reviews, 2007. 215 (1): p. 154-165.
866	37.	van Konijnenburg, D.P.H. and D. Mucida, Intraepithelial lymphocytes. J Current Biology,
867		2017. 27 (15): p. R737-R739.
868	38.	Koppang, E.O., et al., Salmonid T cells assemble in the thymus, spleen and in novel
869		interbranchial lymphoid tissue. J Anat, 2010. 217(6): p. 728-739.
870	39.	Rombout, J.H., G. Yang, and V. Kiron, Adaptive immune responses at mucosal surfaces of
871		teleost fish. Fish and Shellfish Immunology, 2014. 40 (2): p. 634-643.
872	40.	Grove, S., et al., Immune-and enzyme histochemical characterisation of leukocyte
873		populations within lymphoid and mucosal tissues of Atlantic halibut (Hippoglossus
874		hippoglossus). Fish and Shellfish Immunology, 2006. 20 (5): p. 693-708.
875	41.	Ballesteros, N.A., et al., The pyloric caeca area is a major site for IgM+ and IgT+ B cell
876		recruitment in response to oral vaccination in rainbow trout. PLoS One, 2013. 8 (6).
877	42.	Parra, D., et al., <i>B cells and their role in the teleost gut.</i> Developmental & Comparative
878		Immunology, 2016. 64 : p. 150-166.
879	43.	Rombout, J.H., et al., <i>Teleost intestinal immunology</i> . Fish and Shellfish Immunology, 2011.
880	10.	31 (5): p. 616-626.
000		

881 882	44.	Løken, O.M., et al., A teleost structural analogue to the avian bursa of Fabricius. J Anat, 2019.
883	45.	Takeuchi, T. and T. Gonda, Distribution of the pores of epithelial basement membrane in the
884	10	<i>rat small intestine</i> . Journal of Veterinary Medical Science, 2004. 66 (6): p. 695-700.
885	46.	Azumi, R., et al., Dynamics of basal lamina fenestrations in the rat intestinal villous
886	47	epithelium in response to dietary conditions. 2018. 39 (2): p. 65-74.
887	47.	Frey, A., et al., Role of the glycocalyx in regulating access of microparticles to apical plasma
888		membranes of intestinal epithelial cells: implications for microbial attachment and oral
889	40	<i>vaccine targeting.</i> The Journal of Experimental Medicine, 1996. 184 (3): p. 1045-1059.
890	48.	Powell, M., D.J. Speare, and G.M. Wright, <i>Comparative ultrastructural morphology of</i>
891		lamellar epithelial, chloride and mucous cell glycocalyx of the rainbow trout (Oncorhynchus
892 893	49.	<i>mykiss) gill.</i> Journal of Fish Biology, 1994. 44 (4): p. 725-730.
895 894	49.	Jin, C., et al., Atlantic salmon carries a range of novel O-glycan structures differentially
894 895		<i>localized on skin and intestinal mucins.</i> Journal of Proteome Research, 2015. 14 (8): p. 3239-3251.
896	50.	Salinas, I. and D. Parra, Fish mucosal immunity: intestine, in Mucosal health in aquaculture.
890 897	50.	2015, Elsevier. p. 135-170.
898	51.	Gomez, D., J.O. Sunyer, and I. Salinas, The mucosal immune system of fish: The evolution of
899		tolerating commensals while fighting pathogens. Fish & shellfish immunology, 2013. 35 (6):
900		p. 1729-1739.
901	52.	Xu, Z., et al., Specialization of mucosal immunoglobulins in pathogen control and microbiota
902		homeostasis occurred early in vertebrate evolution. Sci Immunol, 2020. 5(44).
903	53.	Xu, Z., et al., Specialization of mucosal immunoglobulins in pathogen control and microbiota
904		homeostasis occurred early in vertebrate evolution. 2020. 5(44).
905	54.	Vogel, W.O., <i>Zebrafish and lymphangiogenesis: a reply</i> . Anatomical Science International,
906		2010. 85 (2): p. 118-119.
907	55.	Hellberg, H., et al., Mast cells in common wolffish Anarhichas lupus L.: ontogeny, distribution
908 909	56.	and association with lymphatic vessels. Fish Shellfish Immunol, 2013. 35 (6): p. 1769-1778. Bakke, A.M., C. Glover, and Å. Krogdahl, <i>Feeding, digestion and absorption of nutrients</i> , in
909 910	50.	The mutifunctional gut of fish, M. Grosell, A.P. Farrell, and C.J. Brauner, Editors. 2011.
911	57.	Buddington, R.K., Å. Krogdahl, and A.M. BakkeMcKellep, <i>The intestines of carnivorous fish:</i>
912	57.	structure and functions and the relations with diet. Acta Physiologica Scandinavica, 1997.
913		161 : p. 67-80.
914	58.	Rust, M.B., <i>Nutritional physiology</i> , J.E. Halver and R.W. Hardy, Editors. 2002.
915	59.	Krogdahl, A., A. Sundby, and H. Holm, <i>Characteristics of digestive processes in Atlantic</i>
916		salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture,
917		2015. 449 : p. 27-36.
918	60.	Krogdahl, A. and A. Sundby, Characteristics of pancreatic function in fish. Biology of the
919		Pancreas in Growing Animals, 1999. 28 : p. 437-458.
920	61.	Smichi, N., et al., Efficient heterologous expression, functional characterization and
921		molecular modeling of annular seabream digestive phospholipase A(2). Chemistry and
922		Physics of Lipids, 2018. 211: p. 16-29.
923	62.	Achouri, N., et al., Dissecting the Interaction Deficiency of a Cartilaginous Fish Digestive
924		Lipase with Pancreatic Colipase: Biochemical and Structural Insights. Biomed Research
925		International, 2020. 2020 .
926	63.	Krogdahl, Å., A. Sundby, and J.J. Olli, Atlantic salmon (Salmo salar) and rainbow trout
927		(Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity
928		and dietary starch level. Aquaculture, 2004. 229(1-4): p. 335-360.
929	64.	Frøystad, M.K., et al., Cloning and characterization of alpha-amylase from Atlantic salmon
930		(Salmo salar L.). Comparative Biochemistry and Physiology A-Molecular & Integrative
931		Physiology, 2006. 145 (4): p. 479-492.

932	65.	Aas, T.S., T. Ytrestoyl, and T. Asgard, Utilization of feed resources in the production of
933		Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquaculture Reports, 2019. 15.
934	66.	Kortner, T.M., et al., Dietary cholesterol supplementation to a plant-based diet suppresses
935		the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic
936		<i>salmon (Salmo salar L.).</i> Br J Nutr, 2014. 111 : p. 2089-2103.
937	67.	Romarheim, O.H., et al., Comparison of white flakes and toasted soybean meal partly
938		replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus
939		mykiss). Aquaculture, 2006. 256(1-4): p. 354-364.
940	68.	Romarheim, O.H., et al., Lipid digestibility, bile drainage and development of morphological
941		intestinal changes in rainbow trout (Oncorhynchus mykiss) fed diets containing defatted
942		soybean meal. Aquaculture, 2008. 274(2-4): p. 329-338.
943	69.	Kortner, T.M., et al., Transcriptional regulation of cholesterol and bile acid metabolism after
944		dietary soybean meal treatment in Atlantic salmon, Salmo salar L. Br J Nutr, 2013. 109 : p.
945		593-604.
946	70.	Gu, M., et al., Effects of dietary plant meal and soya-saponin supplementation on intestinal
947		and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic
948		salmon (Salmo salar L.). Br J Nutr, 2014. 111(03): p. 432-444.
949	71.	Kortner, T.M., et al., Bile components and lecithin supplemented to plant based diets do not
950		diminish diet related intestinal inflammation in Atlantic salmon. Bmc Veterinary Research,
951		2016. 12 .
952	72.	Green, G.M. and N. E.S., Importance of bile in regulation of intraluminal proteolytic enzyme
953		activities in the rat. Gastoenterology, 1980 79 : p. 695-702.
954	73.	Bakke-McKellep, A.M., et al., Absorption of glucose, amino acids, and dipeptides by the
955		intestines of Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 2000. 22(1):
956		p. 33-44.
957	74.	Denstadli, V., et al., Lipid absorption in different segments of the gastrointestinal tract of
958		<i>Atlantic salmon (Salmo salar L.).</i> Aquaculture, 2004. 240 (1-4): p. 385-398.
959	75.	Ronnestad, I., et al., Molecular Cloning and Functional Expression of Atlantic Salmon Peptide
960		Transporter 1 in Xenopus Oocytes Reveals Efficient Intestinal Uptake of Lysine-Containing
961		and Other Bioactive Di- and Tripeptides in Teleost Fish. Journal of Nutrition, 2010. 140(5): p.
962		893-900.
963	76.	Sire, M.F. and J.M. Vernier, Intestinal-Absorption of Protein in Teleost Fish. Comparative
964		Biochemistry and Physiology A-Physiology, 1992. 103 (4): p. 771-781.
965	77.	Tocher, D.R., <i>Metabolism and functions of lipids and fatty acids in teleost fish.</i> Reviews in
966		Fisheries Science, 2003. 11 (2): p. 107-184.
967	78.	Venold, F.F., et al., Intestinal fatty acid binding protein (fabp2) in Atlantic salmon (Salmo
968		salar): Localization and alteration of expression during development of diet induced enteritis.
969		Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 2013.
970		164 (1): p. 229-240.
971	79.	Rosjo, C., et al., Lipid digestibility and metabolism in Atlantic salmon (Salmo salar) fed
972	/31	medium-chain triglycerides. Aquaculture, 2000. 190 (1-2): p. 65-76.
973	80.	Bakke-McKellep, A.M., et al., Atlantic salmon (Salmo salar L.) parr fed genetically modified
974	00.	soybeans and maize: Histological, digestive, metabolic, and immunological investigations.
975		Research in Veterinary Science, 2008. 84 (3): p. 395-408.
976	81.	Prabhu, P.A.J., J.W. Schrama, and S.J. Kaushik, <i>Mineral requirements of fish: a systematic</i>
977	01.	<i>review</i> . Reviews in Aquaculture, 2016. 8 (2): p. 172-219.
978	82.	Bury, N.R., P.A. Walker, and C.N. Glover, <i>Nutritive metal uptake in teleost fish.</i> Journal of
979	52.	Experimental Biology, 2003. 206 (1): p. 11-23.
980	83.	Bæverfjord, G. and Å. Krogdahl, Development and regression of soybean meal induced
981	55.	enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines
982		of fasted fish. Journal of Fish Diseases, 1996. 19 : p. 375-387.
502		oj justen jisin sourrar or risir Diseuses, 1990. 19 . p. 979-907.

983 984 985	84.	Einarsson, S., P.S. Davies, and C. Talbot, <i>The effect of feeding on the secretion of pepsin, trypsin and chymotrypsin in the Atlantic salmon, Salmo salar L.</i> Fish Physiology and Biochemistry, 1996. 15 (5): p. 439-446.
	05	
986	85.	Olli, J.J., K. Hjelmeland, and A. Krogdahl, Soybean Trypsin-Inhibitors in Diets for Atlantic
987		Salmon (Salmo-Salar, L) - Effects on Nutrient Digestibilities and Trypsin in Pyloric Ceca
988		Homogenate and Intestinal Content. Comparative Biochemistry and Physiology a-Physiology,
989		1994. 109 (4): p. 923-928.
990	86.	Krogdahl, Å., et al., Effects of diet composition on apparent nutrient absorption along the
991		intestinal tract and of subsequent fasting on mucosal disaccharidase activities and plasma
992		nutrient concentration in Atlantic salmon Salmo salar L. Aquaculture Nutr, 1999. 5(2): p. 121-
993		133.
994	87.	Krogdahl, Å., A.M. Bakke-McKellep, and G. Baeverfjord, Effects of graded levels of standard
995		soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in
996		Atlantic salmon (Salmo salar L.). Aquaculture Nutr, 2003. 9 (6): p. 361-371.
997	88.	Krogdahl, Å., G.I. Hemre, and T.P. Mommsen, Carbohydrates in fish nutrition: digestion and
998		absorption in postlarval stages. Aquaculture Nutr, 2005. 11(2): p. 103-122.
999	89.	Dale, O.B., et al., From chronic feed-induced intestinal inflammation to adenocarcinoma with
1000		metastases in salmonid fish. Cancer Research, 2009. 69(10): p. 4355-4362.
1001	90.	Krogdahl, A., et al., Tarmproblemer hos oppdrettslaks, i sør og i nord, sommer og vinter (Gut
1002		health problems in cultivated salmon, in the south and north, summer and winter), in Norsk
1003		fiskeoppdrett. 2019, Kyst.no: Bergen. p. 114-117.
1004	91.	Hansen, A.K.G., et al., Dose-response relationship between dietary choline and lipid
1005	51.	accumulation in pyloric enterocytes of Atlantic salmon (Salmo salar L.) in seawater. British
1006		Journal of Nutrition, 2020. 123 (10): p. 1081-1093.
1000	92.	Hansen, A.K.G., et al., Choline supplementation prevents diet induced gut mucosa lipid
1007	52.	accumulation in post-smolt Atlantic salmon (Salmo salar L.). Bmc Veterinary Research, 2020.
1008		16 (1).
1003	93.	Olli, J.J., et al., Nutritive value of four soybean products in diets for Atlantic salmon (Salmo
1010	55.	salar, L.). Acta Agricultura Scandinavica, 1994. 44 : p. 50-60.
1011	94.	Olli, J.J., Å. Krogdahl, and A. Våbenø, <i>Dehulled, solvent-extracted soybean meal as protein</i>
1012	54.	source in diets for Atlantic salmon, Salmo salar L. Aquaculture Res, 1995. 26: p. 167-174.
1013	95.	Krogdahl, Å., Effects of soybean antinutrients on intestinal environment, lipid hydrolysis and
	95.	
1015		utilization on Atlantic salmon (Salmo salar, L). Effects of antinutrient on the nutritional value
1016		of legume diets Vol. 3. 1996, Luxembourgh: European Commission, Directorate-General
1017	00	XII, Science Research and Development.
1018	96.	van den Ingh, T.S.G.A. and Å. Krogdahl, Negative effects of antinutritional factors from soya
1019	07	beans in salmonids. Tijdsschr. Diergeneeskd, 1990. 115 : p. 935-938.
1020	97.	Vandeningh, T.S.G.A.M., et al., Effects of Soybean-Containing Diets on the Proximal and
1021		Distal Intestine in Atlantic Salmon (Salmo-Salar) - a Morphological-Study. Aquaculture, 1991.
1022		94 (4): p. 297-305.
1023	98.	Bakke-McKellep, A.M., et al., Changes in immune and enzyme histochemical phenotypes of
1024		cells in the intestinal mucosa of Atlantic salmon, Salmo salar L., with soybean meal-induced
1025		enteritis. Journal of Fish Diseases, 2000. 23(2): p. 115-127.
1026	99.	Penn, M.H., et al., High level of dietary pea protein concentrate induces enteropathy in
1027		Atlantic salmon (Salmo salar L.). Aquaculture, 2011. 310 (3-4): p. 267-273.
1028	100.	Gajardo, K., et al., Alternative Protein Sources in the Diet Modulate Microbiota and
1029		Functionality in the Distal Intestine of Atlantic Salmon (Salmo salar). Applied and
1030		Environmental Microbiology, 2017. 83 (5).
1031	101.	Krogdahl, A., et al., Soya Saponins Induce Enteritis in Atlantic Salmon (Salmo salar L.). J Agric
1032		Food Chem, 2015. 63 (15): p. 3887-902.

1033	102.	Chikwati, E.M., et al., Interaction of soyasaponins with plant ingredients in diets for Atlantic
1034		salmon, Salmo salar L. British Journal of Nutrition, 2012. 107 (11): p. 1570-1590.
1035	103.	Kortner, T.M., et al., Dietary soyasaponin supplementation to pea protein concentrate
1036		reveals nutrigenomic interactions underlying enteropathy in Atlantic salmon (Salmo salar).
1037		Bmc Veterinary Research, 2012. 8.
1038	104.	Couto, A., et al., <i>Effects of dietary phytosterols and soy saponins on growth, feed utilization</i>
1039		efficiency and intestinal integrity of gilthead sea bream (Sparus aurata) juveniles.
1040	405	Aquaculture, 2014. 432 : p. 295-303.
1041	105.	Couto, A., et al., Effects of dietary soy saponins and phytosterols on gilthead sea bream
1042		(Sparus aurata) during the on-growing period. ANIMAL FEED SCIENCE AND TECHNOLOGY,
1043	100	2014. 198 : p. 203-214.
1044	106.	Couto, A., et al., <i>Dietary saponins and phytosterols do not affect growth, intestinal</i>
1045		morphology and immune response of on-growing European sea bass (Dicentrarchus labrax).
1046	107	Aquaculture Nutrition, 2015: p. n/a-n/a.
1047	107.	Couto, A., et al., Saponins and phytosterols in diets for European sea bass (Dicentrarchus
1048		labrax) juveniles: effects on growth, intestinal morphology and physiology. Aquaculture
1049	100	Nutrition, 2015. 21 (2): p. 180-193.
1050	108.	Romarheim, O.H., et al., <i>Comparison of white flakes and toasted soybean meal partly</i>
1051		replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus
1052	100	mykiss). Aquaculture, 2006. 256 (1-4): p. 354-364.
1053 1054	109.	Smith, A.A., et al., <i>Effects of soybean meal and high-protein sunflower meal on growth performance, feed utilization, gut health and gene expression in Arctic charr (Salvelinus</i>
1054		alpinus) at the grow-out stage. Aquaculture Nutrition, 2018. 24 (5): p. 1540-1552.
1055	110.	Bonaldo, A., et al., Influence of dietary soybean meal levels on growth, feed utilization and
1050	110.	gut histology of Egyptian sole (Solea aegyptiaca) juveniles. Aquaculture, 2006. 261 (2): p.
1057		580-586.
1058	111.	Uran, P.A., et al., Soybean meal induces intestinal inflammation in common carp (Cyprinus
1055	111 .	carpio L.). Fish & Shellfish Immunology, 2008. 25 (6): p. 751-760.
1061	112.	Refstie, S., et al., <i>Digestive capacity, intestinal morphology, and microflora of 1-year and 2-</i>
1062		year old Atlantic cod (Gadus morhua) fed standard or bioprocessed soybean meal.
1063		Aquaculture, 2006. 261 (1): p. 269-284.
1064	113.	Chikwati, E., et al., Alterations in digestive enzyme activities during the development of diet-
1065	110.	<i>induced enteritis in Atlantic salmon, Salmo salar L.</i> Aquaculture, 2013. 402 : p. 28-37.
1066	114.	Sahlmann, C., et al., <i>Early response of gene expression in the distal intestine of Atlantic</i>
1067		salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish &
1068		Shellfish Immunology, 2013. 34 (2): p. 599-609.
1069	115.	Krogdahl, A., A.M. Bakke-McKellep, and G. Baeverfjord, <i>Effects of graded levels of standard</i>
1070		soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in
1071		Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 2003. 9(6): p. 361-371.
1072	116.	Bakke-McKellep, A.M., et al., Response to soy: T-cell-like reactivity in the intestine of Atlantic
1073		salmon, Salmo salar L. Journal of Fish Diseases, 2007. 30 (1): p. 13-25.
1074	117.	Marjara, I.S., et al., Transcriptional regulation of IL-17A and other inflammatory markers
1075		during the development of soybean meal-induced enteropathy in the distal intestine of
1076		Atlantic salmon (Salmo salar L.). Cytokine, 2012. 60 : p. 186-196.
1077	118.	De Santis, C., et al., Nutrigenomic profiling of transcriptional processes affected in liver and
1078		distal intestine in response to a soybean meal-induced nutritional stress in Atlantic salmon
1079		(Salmo salar). Comparative Biochemistry and Physiology D-Genomics & Proteomics, 2015.
1080		15 : p. 1-11.
1081	119.	Gu, M., et al., Effects of dietary plant meal and soya-saponin supplementation on intestinal
1082		and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic
1083		salmon. British Journal of Nutrition, 2014. 111(3): p. 432-444.

1084	120.	Chikwati, E.M., et al., Intestinal epithelial cell proliferation and migration in Atlantic salmon,
1085		Salmo salar L.: effects of temperature and inflammation. Cell and Tissue Research, 2013.
1086		353 (1): p. 123-137.
1087	121.	Venold, F.F., et al., Severity of soybean meal induced distal intestinal inflammation,
1088		enterocyte proliferation rate, and fatty acid binding protein (Fabp2) level differ between
1089		strains of rainbow trout (Oncorhynchus mykiss). Aquaculture, 2012. In press.
1090	122.	Lilleeng, E., et al., Effects of diets containing soybean meal on trypsin mRNA expression and
1091		activity in Atlantic salmon (Salmo salar L). Comparative Biochemistry and Physiology A-
1092	400	Molecular & Integrative Physiology, 2007. 147 (1): p. 25-36.
1093	123.	Gu, M., et al., Effects of diet supplementation of soya-saponins, isoflavones and phytosterols
1094 1005		on Atlantic salmon (Salmo salar, L) fry fed from start-feeding. Aquaculture Nutrition, 2015.
1095 1096	124.	21 (5): p. 604-613. Fischer, U., et al., <i>The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus</i>
1090	124.	mykiss). Fish Shellfish Immunol, 2005. 18 (1): p. 49-60.
1097	125.	Fischer, U., et al., The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus
1098	125.	<i>mykiss).</i> Fish and Shellfish Immunology, 2005. 18 (1): p. 49-60.
1100	126.	Krogdahl, A., et al., Removal of three proteinaceous antinutrients from soybean does not
1100	120.	mitigate soybean-induced enteritis in Atlantic salmon (Salmo salar, L). Aquaculture, 2020.
1101		514.
1103	127.	Penn, M., Lipid malabsorption in Atlantic Salmon – the recurring problem of floating feces.
1104	/	2011. p. 6-11.
1105	128.	Hanche-Olsen, R., et al., Sluttrapport: Nedsatt Tarmhelse Og Forekomst Av Flytefeces Hos
1106		Laks (In Norwegian). 2013: https://www.fhf.no/prosjektdetaljer/?projectNumber=900722.
1107	129.	Krogdahl, Å., et al., Choline and phosphatidylcholine, but not methionine, cysteine, taurine
1108		and taurocholate, eliminate excessive gut mucosal lipid accumulation in Atlantic salmon
1109		(Salmo salar L) Aquaculture, 2020. Provisionally accepted
1110	130.	Hansen, A.K.G., Choline is an essential nutrient for post-smolt Atlantic salmon (Salmo salar
1111		L), in Department of Paraclinical Sciences /. 2020, Norwegian University of Life Sciences:
1112		Oslo. p. 194.
1113	131.	Vogel, W.O.P., Zebrafish and lymphangiogenesis: a reply. Anatomical Science International,
1114		2010. 85 (2): p. 118-119.
1115	132.	Denstadli, V., et al., Medium-Chain and Long-Chain Fatty Acids Have Different Postabsorptive
1116		Fates in Atlantic Salmon. Journal of Nutrition, 2011. 141(9): p. 1618-1625.
1117	133.	Odze, R.D., Pathology of dysplasia and cancer in inflammatory bowel disease.
1118	424	Gastroenterology Clinics of North America, 2006. 35 (3): p. 533-552.
1119	134.	Bjørgen, H., et al., Ectopic epithelial cell clusters in salmonid intestine are associated with
1120	125	<i>inflammation.</i> Journal of Fish Diseases, 2018. 41 (7): p. 1031-1040.
1121	135.	Mosberian - Tanha, P., et al., Granulomatous enteritis in rainbow trout (Oncorhynchus
1122 1123		<i>mykiss) associated with soya bean meal regardless of water dissolved oxygen level.</i> Journal of Fish Diseases, 2018. 41 (2): p. 269-280.
1123	136.	Sterlin, D., et al., The antibody/microbiota interface in health and disease. Mucosal
1124	150.	Immunology, 2020. 13 (1): p. 3-11.
1125	137.	Nishida, A., et al., Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical
1120	157.	Journal of Gastroenterology, 2018. 11 (1): p. 1-10.
1128	138.	Ray, A., K. Ghosh, and E. Ringø, Enzyme - producing bacteria isolated from fish gut: a review.
1120	150.	Aquac Nutr, 2012. 18 (5): p. 465-492.
1130	139.	Falcinelli, S., et al., Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut
1131		microbiota and host transcription of genes involved in lipid metabolism. Sci Rep, 2015. 5: p.
1132		9336.
1133	140.	Semova, I., et al., Microbiota regulate intestinal absorption and metabolism of fatty acids in
1134		the zebrafish. Cell Host Microbe, 2012. 12 (3): p. 277-288.

1135	141.	Jeon, S.R., et al., <i>Current evidence for the management of inflammatory bowel diseases using</i>
1136		fecal microbiota transplantation. Curr Infect Dis Rep, 2018. 20 (8): p. 21.
1137	142.	Narula, N., et al., Systematic review and meta-analysis: fecal microbiota transplantation for
1138	1 4 2	<i>treatment of active ulcerative colitis.</i> Inflamm Bowel Dis, 2017. 23 (10): p. 1702-1709.
1139	143.	Hryckowian, A.J., et al., Microbiota-accessible carbohydrates suppress Clostridium difficile
1140	1 1 1	infection in a murine model. Nat Microbiol, 2018. 3 (6): p. 662-669.
1141	144.	Hooper, L.V., et al., <i>Molecular analysis of commensal host-microbial relationships in the</i>
1142 1143	145.	<i>intestine</i> . 2001. 291 (5505): p. 881-884. Stappenbeck, T.S., L.V. Hooper, and J.I.J.P.o.t.N.A.o.S. Gordon, <i>Developmental regulation of</i>
1145 1144	145.	intestinal angiogenesis by indigenous microbes via Paneth cells. 2002. 99 (24): p. 15451-
1144 1145		15455.
1145	146.	Bates, J.M., et al., Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents
1140	140.	inflammation in zebrafish in response to the gut microbiota. Cell host & microbe, 2007. 2 (6):
1147		p. 371-382.
1140	147.	Bates, J.M., et al., Distinct signals from the microbiota promote different aspects of zebrafish
1150	± 17 .	gut differentiation. Developmental biology, 2006. 297 (2): p. 374-386.
1151	148.	Rawls, J.F., B.S. Samuel, and J.I. Gordon, <i>Gnotobiotic zebrafish reveal evolutionarily</i>
1152		conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences
1153		of the United States of America, 2004. 101 (13): p. 4596-4601.
1154	149.	Ivanov, I.I., et al., Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell,
1155		2009. 139 (3): p. 485-498.
1156	150.	Niess, J.H., et al., CX(3)CR1-mediated dendritic cell access to the intestinal lumen and
1157		<i>bacterial clearance</i> . Science, 2005. 307 (5707): p. 254-258.
1158	151.	Mazmanian, S.K., J.L. Round, and D.L.J.N. Kasper, A microbial symbiosis factor prevents
1159		intestinal inflammatory disease. 2008. 453(7195): p. 620-625.
1160	152.	Smith, P.M., et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg
1161		<i>cell homeostasis</i> . 2013. 341 (6145): p. 569-573.
1162	153.	Liu, W., et al., Effects of dietary microencapsulated sodium butyrate on growth, intestinal
1163		mucosal morphology, immune response and adhesive bacteria in juvenile common carp (< i>
1164		<i>Cyprinus carpio</i>) pre-fed with or without oxidised oil. British Journal of Nutrition, 2014: p.
1165		1-15.
1166	154.	Macfarlane, G.T. and S. Macfarlane, Bacteria, colonic fermentation, and gastrointestinal
1167		health. Journal of AOAC International, 2012. 95(1): p. 50-60.
1168	155.	Koh, A., et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial
1169	450	metabolites. Cell, 2016. 165 (6): p. 1332-1345.
1170	156.	Cholan, P.M., et al., Conserved anti-inflammatory effects and sensing of butyrate in
1171	157	zebrafish. bioRxiv, 2020: p. 2020.05.13.069997.
1172	157.	Lynn, M.A., et al., <i>Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune</i>
1173	158.	responses in mice. Cell host & microbe, 2018. 23 (5): p. 653-660.
1174 1175	136.	Sepahi, A., et al., <i>Symbiont-derived sphingolipids modulate mucosal homeostasis and B cells in teleost fish.</i> 2016. 6 (1): p. 1-13.
1175	159.	
1176	159.	Navarrete, P., et al., Short - term effects of dietary soybean meal and lactic acid bacteria on the intestinal morphology and microbiota of A tlantic salmon (Salmo salar). Aquaculture
1177		Nutrition, 2013. 19 (5): p. 827-836.
1178	160.	Vasanth, G., et al., A microbial feed additive abates intestinal inflammation in Atlantic
1179	100.	salmon. Frontiers in Immunology, 2015. 6 .
1180	161.	Romarheim, O.H., et al., <i>Bacteria grown on natural gas prevent soybean meal-induced</i>
1182	-01.	enteritis in Atlantic salmon. The Journal of nutrition, 2011. 141 (1): p. 124-130.
1183	162.	Romarheim, O.H., et al., <i>Prevention of soya-induced enteritis in Atlantic salmon (Salmo salar)</i>
1184		by bacteria grown on natural gas is dose dependent and related to epithelial MHC II
		,

1185 1186		<i>reactivity and CD8α+ intraepithelial lymphocytes.</i> British journal of nutrition, 2013. 109 (6): p. 1062-1070.
1187 1188	163.	Romarheim, O.H., et al., <i>Cell wall fractions from Methylococcus capsulatus prevent soybean meal-induced enteritis in Atlantic salmon (Salmo salar)</i> . Aquaculture, 2013. 402 : p. 13-18.
1188	164.	Grammes, F., et al., Candida utilis and Chlorella vulgaris counteract intestinal inflammation
1190	104.	in Atlantic salmon (Salmo salar L.). PloS one, 2013. 8 (12).
1191	165.	Reveco-Urzua, F.E., et al., Candida utilis yeast as a functional protein source for Atlantic
1192		salmon (Salmo salar L.): Local intestinal tissue and plasma proteome responses. PloS one,
1193		2019. 14 (12).
1194	166.	Hansen, J.O., et al., Effect of Candida utilis on growth and intestinal health of Atlantic salmon
1195		(Salmo salar) parr. Aquaculture, 2019. 511 .
1196	167.	Yasuda, K., et al., Biogeography of the intestinal mucosal and lumenal microbiome in the
1197		<i>rhesus macaque.</i> 2015. 17 (3): p. 385-391.
1198	168.	Zhang, Z., et al., Spatial heterogeneity and co-occurrence patterns of human mucosal-
1199		associated intestinal microbiota. 2014. 8 (4): p. 881-893.
1200	169.	Gajardo, K., et al., A high-resolution map of the gut microbiota in Atlantic salmon (Salmo
1201		salar): A basis for comparative gut microbial research. Scientific Reports, 2016. 6: p. 30893.
1202	170.	Gajardo, K., et al., Alternative protein sources in the diet modulate microbiota and
1203		functionality in the distal intestine of Atlantic salmon (Salmo salar). Appl Environ Microbiol,
1204		2017. 83 (5): p. e02615-16.
1205	171.	Gajardo, K., et al., A high-resolution map of the gut microbiota in Atlantic salmon (Salmo
1206	470	salar): A basis for comparative gut microbial research. Sci Rep, 2016. 6: p. 30893.
1207	172.	Huyben, D., et al., Dietary live yeast and increased water temperature influence the gut
1208	170	microbiota of rainbow trout. J Appl Microbiol, 2018. 124 (6): p. 1377-1392.
1209 1210	173.	Van den Abbeele, P., et al., <i>The host selects mucosal and luminal associations of coevolved</i>
1210	174.	gut microorganisms: a novel concept. FEMS Microbiol Rev, 2011. 35 (4): p. 681-704. Llewellyn, M.S., et al., The biogeography of the Atlantic salmon (Salmo salar) gut
1211	1/4.	<i>microbiome.</i> ISME J, 2015. 10 (5): p. 1280-1284.
1212	175.	Lokesh, J., et al., Succession of embryonic and the intestinal bacterial communities of Atlantic
1213	175.	salmon (Salmo salar) reveals stage-specific microbial signatures. MicrobiologyOpen, 2019.
1215		8(4).
1216	176.	Jin, Y., et al., Atlantic salmon raised with diets low in long-chain polyunsaturated n-3 fatty
1217		acids in freshwater have a Mycoplasma-dominated gut microbiota at sea. Aquac Environ
1218		Interact, 2019. 11 : p. 31-39.
1219	177.	Gupta, S., J. Fernandes, and V. Kiron, Antibiotic-Induced Perturbations Are Manifested in the
1220		Dominant Intestinal Bacterial Phyla of Atlantic Salmon. Microorganisms, 2019. 7(8).
1221	178.	Gupta, S., et al., Macroalga-derived alginate oligosaccharide alters intestinal bacteria of
1222		Atlantic salmon. Front Microbiol, 2019. 10.
1223	179.	Karlsen, C., et al., The environmental and host - associated bacterial microbiota of Arctic
1224		seawater - farmed Atlantic salmon with ulcerative disorders. J Fish Dis, 2017. 40(11): p.
1225		1645-1663.
1226	180.	Gupta, S., et al., Lactobacillus dominate in the intestine of Atlantic salmon fed dietary
1227		probiotics. Front Microbiol, 2019. 9 .
1228	181.	Webster, T.M.U., et al., Environmental plasticity and colonisation history in the Atlantic
1229		salmon microbiome: a translocation experiment. Molecular ecology, 2020. 29(5): p. 886-898.
1230	182.	Webster, T.M.U., et al., Interpopulation variation in the Atlantic salmon microbiome reflects
1231		environmental and genetic diversity. Appl Environ Microbiol, 2018. 84 (16): p. e00691-18.
1232	183.	Heys, C., et al., Neutral processes dominate microbial community assembly in Atlantic
1233		salmon, Salmo salar. Appl Environ Microbiol, 2020. 86 (8).

1234 1235 1236	184.	Ciric, M., et al., <i>Characterization of mid-intestinal microbiota of farmed Chinook salmon</i> <i>using 16S rRNA gene metabarcoding</i> . Archives of Biological Sciences, 2019. 71 (4): p. 577- 587.
	105	
1237	185.	Lyons, P.P., et al., <i>Phylogenetic and functional characterization of the distal intestinal</i>
1238		microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings.
1239		Journal of Applied Microbiology, 2017. 122 (2): p. 347-363.
1240	186.	Lyons, P.P., et al., Effects of low-level dietary microalgae supplementation on the distal
1241		intestinal microbiome of farmed rainbow trout Oncorhynchus mykiss (Walbaum).
1242		Aquaculture Research, 2017. 48 (5): p. 2438-2452.
1243	187.	Rimoldi, S., et al., The Effects of Dietary Insect Meal from Hermetia illucens Prepupae on
1244		Autochthonous Gut Microbiota of Rainbow Trout (Oncorhynchus mykiss). Animals, 2019.
1245		9(4).
1246	188.	Brown, R.M., G.D. Wiens, and I. Salinas, Analysis of the gut and gill microbiome of resistant
1247		and susceptible lines of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology,
1248		2019. 86 : p. 497-506.
1249	189.	Razin, S., D. Yogev, and Y. Naot, Molecular biology and pathogenicity of mycoplasmas.
1250		Microbiol Mol Biol Rev, 1998. 62 (4): p. 1094-156.
1251	190.	Li, Y., et al., Differential response of digesta-and mucosa-associated intestinal microbiota to
1252		dietary black soldier fly (Hermetia illucens) larvae meal in seawater phase Atlantic salmon
1253		(Salmo salar). bioRxiv, 2020.
1254	191.	Wang, Z., et al., Gut flora metabolism of phosphatidylcholine promotes cardiovascular
1255		<i>disease.</i> Nature, 2011. 472 (7341): p. 57-63.
1256	192.	Reveco, F.E., et al., Intestinal bacterial community structure differs between healthy and
1257	192.	inflamed intestines in Atlantic salmon (Salmo salar L.). Aquaculture, 2014. 420 : p. 262-269.
1258	193.	Huyben, D., et al., <i>High-throughput sequencing of gut microbiota in rainbow trout</i>
1259	155.	(Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia
1260		illucens). Aquaculture, 2019. 500 : p. 485-491.
1261	194.	Terova, G., et al., Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by
1262	194.	insect meal from Hermetia illucens prepupae in the diet. Rev Fish Biol Fish, 2019. 29 (2): p.
1263		465-486.
1265	105	
	195.	Rimoldi, S., et al., The Effects of Dietary Insect Meal from Hermetia illucens Prepupae on
1265		Autochthonous Gut Microbiota of Rainbow Trout (Oncorhynchus mykiss). Animals (Basel),
1266	100	2019. 9 (4).
1267	196.	Jaramillo-Torres, A., et al., Influence of dietary supplementation of probiotic Pediococcus
1268		acidilactici MA18/5M during the transition from freshwater to seawater on intestinal health
1269		and microbiota of Atlantic salmon (Salmo salar L.). Frontiers in Microbiology, 2019. 10.
1270	197.	Zhang, M., et al., Gnotobiotic models: Powerful tools for deeply understanding intestinal
1271		microbiota-host interactions in aquaculture. Aquaculture, 2020. 517: p. 734800.
1272	198.	Francis, G., H.P.S. Makkar, and K. Becker, Antinutritional factors present in plant-derived
1273		alternate fish feed ingredients and their effects in fish. Aquaculture, 2001. 199 (3-4): p. 197-
1274		227.
1275	199.	Krogdahl, A., et al., Important antinutrients in plant feedstuffs for aquaculture: an update on
1276		recent findings regarding responses in salmonids. Aquaculture Research, 2010. 41(3): p. 333-
1277		344.
1278		

1280 **Table**

1281 Table 1. Current antinutrients which may affect digestive functions and gut health in 1282 salmon*

Antinutrient	Common mechanisms and effects
Enzyme inhibitors	Inhibit macronutrient digestion
Lectins	Bind to gut cell receptors and, depending on affected receptor,
	may accelerate gut growth, make the gut leakier and more open
	for increased influx of macromolecules and bacteria, stimulate
	insulin production and alter metabolism
Saponins	Interfere with lipid and protein digestion and which also may
	increase permeability of the gut mucosa
Phytosterols	Interfere with cholesterol absorption and metabolism
Phytic acid	Impairs mineral digestion and binds phosphorus in particular
Oligosaccharides	May cause diarrhea and alter the microbiota
Fibres	Interfere with digestion, absorption and utilization of macro as
	well as micronutrients

¹²⁸³ *Information extracted from reviews by Francis et al [198] and Krogdahl et al [199]

1284

1285 Figures

Figure 1. Macroscopic image of the gastrointestinal tract of the Atlantic salmon.
Modified after Løkka et al. 2013. [20].

Figure 2. Sections of second segment of the mid intestine, Atlantic salmon. A: 1288 Simple folds (sf) and complex folds (cf) are special for this portion of the intestine. B: 1289 The mucosa consists of the epithelium (e), the lamina propria (lp), the stratum 1290 compactum (sc) and the stratum granulosum (sg). The muscularis consists of an 1291 inner circular (cm) and an outer longitudinal (lm) layer. Between these layers, 1292 parasympathetic ganglion cells can be seen (arrows). The intestine is finally covered 1293 by the serosa (s). HE staining. (Modified from Løkka et al. [17]). 1294 Figure 3. Normal intestinal architecture, Atlantic salmon, second segment of 1295

the mid intestine. *In situ* hybrization for bacteria (16s rRNA) (red staining). Bacteria
are confined to the intestinal lumen and the mucus and are rarely observed within
epithelial cells. The mucus and the glycocalyx form effective barriers towards the
external milieu.

Figure 4. Inflammatory changes in the gut. The image shows characteristics
typical for soybean meal induced enteritis: Short mucosal folds, massive immune cell
infiltration in lamina propria and absence of supranuclear vacuoles in the
enterocytes.

Figure 5. Steatosis. A: Macroscopic appearance of steatosis in the pyloric caeca. Note both the swollen and pale caeca, a result of excessive lipid accumulation (black arrow), and the unaffected darker-appearing caeca (white arrow). B: Enterocytes of the pyloric caeca with high degree of hypervacuolation/steatosis and C: normalappearing enterocytes.

Jonuly

outinal report

3011

- Macro- and microscopic anatomy of the salmon gastrointestinal tract is reviewed.
- Digestive function and responses to variation in diet composition are presented.
- Known adverse reactions to feed are discussed.
- Present knowledge on gut microbiota in the fish intestine is summarized.

builting